K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
23 tháng 12 2023
a: Ta có: DB\(\perp\)AB
AC\(\perp\)AB
Do đó: DB//AC
Xét ΔECA có DB//AC
nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b: Xét ΔCEK có DB//EK
nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)
Xét ΔAEI có DB//EI
nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)
Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)
=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)
=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)
Từ (1),(2),(3) suy ra EI=EK
a. Theo định lý về đường phân giác trong tam giác, ta có:
$\frac{AB}{AC} = \frac{BD}{DC} \tag{1}$
Vì DE vuông góc với AB tại E, nên theo định lý Pythagoras, ta có:
$AE^2 = AB^2 - BE^2 \tag{2}$
$DE^2 = DB^2 - BE^2 \tag{3}$
Từ (2) và (3), ta có:
$AE^2 = DE^2 \Rightarrow AE = DE \tag{4}$
Từ (1) và (4), ta có:
$\frac{AB}{AC} = \frac{DE}{DC} = \frac{AE}{DC} \Rightarrow AC.BE = AB.EA$
b. Do AF // BC và AD cắt BC tại D, AF cắt AD tại K nên ta có:
$\frac{FA}{FK} = \frac{DA}{DK} \tag{5}$
Do DI // AB và DC cắt AB tại B, DI cắt DC tại K nên ta có:
$\frac{KI}{KD} = \frac{BI}{BD} \tag{6}$
Từ (5) và (6), ta có:
$\frac{FA}{FK} + \frac{KI}{KD} = \frac{DA}{DK} + \frac{BI}{BD} = 1$
Bạn ơi mình xin lỗi nhé, bài mình bị lỗi latex T-T