Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bn tự vẽ nha
a)Xét Tam giác ABE và tam giác HBEcó
góc BAE= góc BHE(= 90 độ)
cạnh BE chung
góc ABE=góc HBE(giả thiết)
=> Tam giác ABE = tam giác HBE(c/h-g/n)
b) VÌ Tam giác ABE = tam giác HBE(cmt)
=>BA=BH(2 cạnh tương ứng)
=>B thuộc đường trung trực của AH
=>BE là đường trung trực của đoạn thẳng AH
c) VÌ Tam giác ABE = tam giác HBE(cmt)
=>AE=HE(2 cạnh tương ứng)
Xét tam giác AEK và tam giác HEC có
góc KAE=CHE(= 90 độ)
AE=HE
góc AEK=góc HEC(= 90 độ)
=>tam giác AEK = tam giác HEC(g.c.g)
=>Ek=EC(2 cạnh tương ứng)
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác của góc HBA).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
Xét tam giác ABE và tam giác HBE có:
BAE=BHE=900
BE là cạnh chung
góc ABE=gócHBE
=>tam giác ABE=tam giác HBE(cạnh huyền góc nhọn)
b)Ta có :BA=BH(Vi tam giác ABE=tam giác HBE)
EA=EH(Vi tam giác ABE=tam giác HBE)
=>BE là đường trung trực của AH
c)Xét tam giác EKA va tam giác ECH,có
AE=EH(Vi tam giác ABE=tam giác HBE)
góc EAK=góc EHC=900
góc AEK=góc HEC(2 góc đối đỉnh)
=>tam EAK=tam giác HEC(g.c.g)
=>EK=EC(2 cạnh tương ứng)
1. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co
BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la tia p/g goc B)
--> tam giac ABE= tam giac HBE ( ch=gn)
b) ta co
BA=BH ( tam giac ABE= tam giac HBE)
EA=EH( tam giac ABE= tam giac HBE)
==> BE la duong trung truc cua AH
c) xet tam giac EKA va tam giac ECH ta co
AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )
--> tam giac EKA = tam giac ECH ( g--c-g)
--> EK=EC (2 canh tuong ung )
d) tu diem E den duong thang HC ta co :
EH la duong vuong goc ( EH vuong goc BC)
EC la duong xien
-> EH<EC ( quan he duong xien duong vuong goc)
ma EH= AE ( tam giac ABE= tam giac HBE)
nen AE < EC
Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng
1) Tam giác ABE=tam giác HBE
2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC
3) AE<EC
a) Vì EH ⊥ BC ( gt )
⇒ △ BHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có :
BE chung
\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\))
⇒ △ BAE = △ BHE ( cạnh huyền - góc nhọn )
b) Gọi I là giao điểm của AH và BE
Xét △ ABI và △ HBI có :
BA = BH [ △ BAE = △ BHE (cmt) ]
\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\) )
BI chung
⇒ Δ ABI = Δ HBI ( c.g.c )
⇒ \(\widehat{AIB}=\widehat{AIH}\) ( 2 góc tương ứng )
Mà \(\widehat{AIB}+\widehat{AIH}\) = 1800 ( 2 góc kề bù )
⇒ \(\widehat{AIB}=\widehat{AIH}\) = 900
⇒ BI ⊥ AH (1)
Ta có: IA = IH ( Δ ABI = Δ HBI ( cmt )
Mà I nằm giữa hai điểm A và H (2)
⇒ I là trung điểm của AH ( 3)
Từ (1) (2) (3) ⇒ BI là trung trực của AH
Hay BE là trung trực của AH
c) Xét Δ KAE và Δ CHE có:
\(\widehat{KAE}=\widehat{CHE}\) ( = 900 )
AE = HE ( Δ BAE = Δ BHE (cmt)
\(\widehat{AEK}=\widehat{HEC}\) ( 2 góc đối đỉnh )
⇒ Δ KAE = Δ CHE ( g.c.g )
⇒ EK = EC ( 2 cạnh tương ứng )
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: Ta có: ΔBAE=ΔBHE
nên BA=BH và EA=EH
hay BE là đường trung trực của AH
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)
BE chung
^ABE = ^HBE (BE là phân giác ^ABC)
=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)
b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)
=> E thuộc đường trung trực của AH (1)
Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)
=> B thuộc đường trung trực của AH (2)
Từ (1) và (2) => BE là đường trung trực của AH (đpcm)
c) Ta có: ^BEK = ^BEA + ^AEK
^BEC = ^BEH + ^HEC
Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)
^AEK = ^HEC (2 góc đối đỉnh)
=> ^BEK = ^BEC
Xét tam giác BEK và tam giác BEC:
^BEK = ^BEC (cmt)
^KBE = ^CBE (BE là phân giác ^ABC)
BE chung
=> tam giác BEK = tam giác BEC (g - c - g)
=> EK = EC (cặp cạnh tương ứng)