K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta có

ˆHBA+ˆHAB=900;ˆHAB+ˆHAF=900⇒ˆHBA=ˆHAF(1)HBA^+HAB^=900;HAB^+HAF^=900⇒HBA^=HAF^(1)

ˆBHE+ˆEHA=900;ˆEHA+ˆFHA=900⇒ˆBHE=ˆFHA(2)BHE^+EHA^=900;EHA^+FHA^=900⇒BHE^=FHA^(2)

xét △BEH và △AFH có

(1) và (2)

⇒ △BEH ~ △AFH(g - g)

b) xét △AHB và △CAB có

ˆH=ˆA=900;ˆBH^=A^=900;B^ chung

⇒ △AHB ~ △CAB (g - g)

⇒BHBA=AHAC⇒BHAH=ABAC⇒BHBA=AHAC⇒BHAH=ABAC

từ câu a ⇒ EHFH=BHAHEHFH=BHAH

⇒ ABAC=EHFH⇒ABEH=ACFH(3)ABAC=EHFH⇒ABEH=ACFH(3)

xét △CAB và △FHE có

(3); ˆA=ˆH=900A^=H^=900

⇒ △CAB ~ △FHE (g - g)

⇒ ABHE=BCEF⇒AB.EF=HE.BCABHE=BCEF⇒AB.EF=HE.BC ⇒ đpcm

19 tháng 9 2021

F thuộc đoạn nào ??

19 tháng 9 2021

cm: HEF = BCA

undefined

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 6^2+8^2=10cm

HA=6*8/10=4,8cm

a: Xet ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồg dạng với ΔHBA

b: ΔABC vuông tại A mà AH là đường cao

nên HA^2=HB*HC

c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co

góc ACD=góc HCE

=>ΔCAD đồng dạng với ΔCHE

=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)

25 tháng 2 2019

A B C H

Giải: a) Ta có : \(S_{\Delta ABC}\)\(\frac{AH.BC}{2}\) (1)

                      \(S_{\Delta ABC}\)\(\frac{AB.AC}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)

b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)

Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625

=> BC = 25

Ta có: AH.BC = AB.AC (cmt)

hay AH. 25 = 15.20

=> AH.25 = 300

=> AH = 300 : 25

=> AH = 12

c) chưa hc

a: Xét ΔBHE vuông tại E và ΔBAH vuông tạiH có

góc B chung

=>ΔBHE đồng dạngvơi ΔBAH

b: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

c,d: Xét ΔAHC vuông tại H có HF là đường cao

nên AH^2=AF*AC và CH^2=CF*CA

e: AE*AB=AF*AC=AH^2

=>AE/AC=AF/AB

mà góc EAF chung

nên ΔAEF đồng dạng với ΔACB