K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

b: BC=căn 6^2+8^2=10cm 

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

c: AM=BC/2=5cm

=>HM=1,4cm 

S HAM=1/2*1,4*4,8=3,36cm2

a) ta có

ˆHBA+ˆHAB=900;ˆHAB+ˆHAF=900⇒ˆHBA=ˆHAF(1)HBA^+HAB^=900;HAB^+HAF^=900⇒HBA^=HAF^(1)

ˆBHE+ˆEHA=900;ˆEHA+ˆFHA=900⇒ˆBHE=ˆFHA(2)BHE^+EHA^=900;EHA^+FHA^=900⇒BHE^=FHA^(2)

xét △BEH và △AFH có

(1) và (2)

⇒ △BEH ~ △AFH(g - g)

b) xét △AHB và △CAB có

ˆH=ˆA=900;ˆBH^=A^=900;B^ chung

⇒ △AHB ~ △CAB (g - g)

⇒BHBA=AHAC⇒BHAH=ABAC⇒BHBA=AHAC⇒BHAH=ABAC

từ câu a ⇒ EHFH=BHAHEHFH=BHAH

⇒ ABAC=EHFH⇒ABEH=ACFH(3)ABAC=EHFH⇒ABEH=ACFH(3)

xét △CAB và △FHE có

(3); ˆA=ˆH=900A^=H^=900

⇒ △CAB ~ △FHE (g - g)

⇒ ABHE=BCEF⇒AB.EF=HE.BCABHE=BCEF⇒AB.EF=HE.BC ⇒ đpcm

9 tháng 1 2023

a) Xét tam giác ABC có : BN = CN

                                        AP = PC

suy ra : NP là đường trung bình của tam giác ABC

suy ra : NP song song với AB và NP = AB/2

Xét tam giác ABC có : AM = BM ; BN = CN

suy ra MN là đường trung bình của tam giác ABC

suy ra MN song song với AC và MN = AC/2

Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )

                                    NP song song với MA ( NP song song AB )

suy ra : tứ giác AMNP là hbh

mà góc BAC = 90 độ

suy ra : hbh AMNP là hcn

b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )

suy ra : công thức tính diện tích hcn AMNP là :

    SAMNP = MN.NP

Ta có : MN = AC/2

mà AC = 8

suy ra : MN = 8/2 = 4cm

Ta có : NP = AB/2

mà AB = 6

suy ra : NP = 6/2 = 3cm

suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)

c) phần c hình như sai rồi á bạn

d) Ta có : AMNP là hcn ( đã C/M ở phần a )

Để hcn AMNP là hình vuông

khi và chỉ khi : MA = MN 

mà MA = BA/2

      MN = CA/2

suy ra : để hcn nhật AMNP là hv thì AB = AC

1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=HC\cdot BC\)

3: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN∼ΔACB

4 tháng 3 2022

TK

1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB

25 tháng 4 2021