Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔIMA vuông tại M và ΔIMC vuông tại M có
IM chung
MA=MC
Do đó; ΔIMA=ΔIMC
c: Xét ΔCAB có
M là trung điểm của AC
MI//AB
Do đó: I là trung điểm của BC
Ta có: ΔABC vuông tại A
mà AI là đường trung tuyến
nên AI=BC/2
a: \(\widehat{ACB}=35^0\)
b: Xét ΔABI vuông tại A và ΔMBI vuông tại M có
BI chung
BA=BM
Do đó: ΔABI=ΔMBI
c: Xét ΔAIK vuông tại A và ΔMIC vuông tại M có
IA=IM
\(\widehat{AIK}=\widehat{MIC}\)
Do đó: ΔAIK=ΔMIC
Suy ra: IK=IC
a,
Ta có :
Δ ABC vuông tại A
Mà AI là đường trung tuyến của BC
=> AI = BI = IC
Xét Δ AIB, có :
AI = BI (cmt)
=> Δ AIB cân tại A
Xét Δ AIC, có :
AI = AC (cmt)
=> Δ AIC cân tại I
a) Ta có: góc A + góc B + góc C = 180 độ ( tổng 3 góc trong tam giác)
90 độ + 60 độ + góc C = 180 độ
góc C = 180 độ - (90 độ + 60 độ)
góc C = 30 độ
Xét tam giác ABC có:
góc A > góc B > góc C
(90 độ > 60 độ > 30 độ)
-> BC>CA>AB
(quan hệ giữa cạnh và góc đối diện)