K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔIMA vuông tại M và ΔIMC vuông tại M có

IM chung

MA=MC

Do đó; ΔIMA=ΔIMC

c: Xét ΔCAB có 

M là trung điểm của AC

MI//AB

Do đó: I là trung điểm của BC

Ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên AI=BC/2

16 tháng 4 2022

cảm ơn bạn yêu nhé

11 tháng 3 2019

a) Ta có: góc A + góc B + góc C = 180 độ ( tổng 3 góc trong tam giác)

               90 độ + 60 độ + góc C = 180 độ

                                          góc C = 180 độ - (90 độ + 60 độ)

                                           góc C = 30 độ

Xét tam giác ABC có:

góc A > góc B > góc C

(90 độ > 60 độ > 30 độ)

-> BC>CA>AB

(quan hệ giữa cạnh và góc đối diện)                         

2 tháng 5 2021

Giải hộ mình câu cuối phần d nha, 😊

20 tháng 3 2018

xem trên mạng

26 tháng 4 2021

Chưa chắc đã có mà xem 

12 tháng 5 2019

a) áp dụng định lí py-ta-go ta có:

           \(BC^2=AB^2+AC^2\)

=> 225 = 81 + 144 = 225

=> tam giác ABC là tam giác vuông

trong tam giác vuông ABC có \(\widehat{A}\)\(\widehat{B}\)>\(\widehat{C}\)(15cm>12cm > 9cm) vì góc đối diện vs cạnh lớn hơn là góc lớn hơn

vậy \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)

b) xem lại đề bài

  9cm A B C 12cm 15cm D

18 tháng 3 2022

phần b bạn kẻ thêm 1 đường nữa nhé, đề bài đúng r

19 tháng 8 2018

a/   áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :

             AB2  +AC= BC2

         <=> 6+AC2 = 102

         <=> AC2 = 64

         <=> AC=8 (cm )

ta có AB < AC < BC (6 < 8 < 10 )

=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )

b/   xét tam giác CAB và CAD có

         CA chung

         AB = AD ( vì A là trung điểm của BD )

       \(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )

=> tam giác CAB = tam giác CAD ( c - g - c )

=> CB = CD

=> tam giác BCD cân tại C

các câu còn lại mk k biết làm dâu 

học tốt

3 tháng 6 2017

A B C D K Q M 1 2 1

a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62

=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)

=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)

b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)

 => Tam giác BCD cân tại C (đpcm) 

c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.

=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)

d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)

Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C(2)

Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC

Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.

=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD

=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .

3 tháng 6 2017

a, AB2 + AC2 = BC2    \(\Rightarrow\) AC= BC - AB2    hay  AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8

 SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )

b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ) 

AB = AD ( A là trung điểm BD )

AC : cạnh chung

\(\Rightarrow\)\(\Delta\)ABC =    \(\Delta\)ADC ( 2 cạnh góc vuông )

\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )

\(\Rightarrow\)\(\Delta\)BCD cân

 ý c với d mình đang nghĩ đới nhá ^_^