K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ nha

a)Vì tam giác có AB=AE và góc BAE bằng 90 đọ nên tam giác BAE vuông cân mà AM là tia phân giác của góc BAE nên AM cùng là đg cao và là đg trung tuyến của tam giác BAE(tự chúng minh)

Suy ra BM=AM=MC(tính chất đg trung tuyến của tam giác vuông) và góc BMA bằng 90 độ.Do đó tam giác ABM vuông cân(ĐPCM)

b)Xét 2 tam giác BHA và tam giác AIE lần lượt vuông tại H,I có:

BA=AE

góc BAH=góc AEI(vì cùng phụ với góc IAE)

Suy ra tam giác BHA =tam giác AIE(cạnh huyền-góc nhọn kề)

Suy ra IE=AH(đpcm)

c)từ E kẻ đg vuông góc với IE cắt BC tại D,nối M với D 

Ta có:IH vuông góc với IE mà ED vuông góc với IE nên IH song song với DE.Suy ra có 2 cặp song song với nhau và cắt nhau đó là HD với IE,IH với ED

Do đó áp dụng t/c đoạn chắn suy ra IE=HD mà IE=AH nên AH =HD

Ta lại có:IH song song vói ED mà IH vuông góc với BC nên ED vuông góc với BC

Suy ra tam giác BDE vuông góc tại D

Xét tam giác BDE có đg trung tuyến MD(vì M là trung điểm của BE(câu A)) nên BM=MD=ME(t/c đg trung tuyến của tam giác vuông)

Mà AM=BM=ME(câua)) nên MA=MD

Suy ra tam giác AHM=tam giác DHM(c.c.c)

Suy ra góc AHM=góc DHM,mà tổng 2 góc này bằng 90 độ nên góc AHM=góc DHM=45 độ(đpcm)

2 tháng 4 2017

A B C H I M E

1) Do \(\Delta BAE\)có \(AB=AE\Rightarrow\Delta BAE\)cân vuông tại A

Mà \(AM\)là đường phân giác của \(\Delta BAE\)(hay\(\Delta ABC\))

\(\Rightarrow AM\)đồng thời là đường cao của \(\Delta BAE\Rightarrow\widehat{AMB}=\widehat{AME}=90^0\)

Ta có: \(\widehat{BAM}=\widehat{EAM}=\frac{\widehat{BAE}}{2}=45^0\left(1\right)\).Mà \(\Delta BAE\)vuông cân tại A\(\Rightarrow\widehat{ABM}=\widehat{AEM}=\frac{180^0-\widehat{BAE}}{2}=45^0\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\Delta ABM\)vuông cân (đpcm)

2) Vì \(\Delta ABC\)có \(\widehat{BAC}=90^0\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=90^0\left(3\right)\)

Vì H là đường cao của \(\Delta ABC\Rightarrow\widehat{AHC}=90^0\Rightarrow\widehat{HAC}+\widehat{ACH}=180^0-\widehat{AHC}=90^0\)(Hay \(\widehat{HAC}+\widehat{ACB}=90^0\))\(\left(4\right)\)

Từ (3) và (4)\(\Rightarrow\widehat{ABC}=\widehat{HAC}=90^0-\widehat{ACB}\)(Hay \(\widehat{ABH}=\widehat{IAE}\))

Xét \(\Delta ABH\)\(\Delta EAI\)có:\(\hept{\begin{cases}\widehat{AHB}=\widehat{EIA}=90^0\\AB=AE\\\widehat{ABH}=\widehat{EAI}\end{cases}}\Rightarrow\Delta ABH=\Delta EAI\)(cạnh huyền góc nhọn)

\(\Rightarrow IE=AH\)(Đpcm)

                  

5 tháng 4 2019

kẻ IH vuông góc với AH thì H bạn đã cho đâu

a: Ta có: BM//EF

EF\(\perp\)AH

Do đó: AH\(\perp\)BM

Xét ΔAMB có

AH là đường cao

AH là đường phân giác

Do đó: ΔAMB cân tại A

b: Xét ΔAFE có 

AH vừa là đường cao, vừa là đường phân giác

Do đó: ΔAFE cân tại A

=>AF=AE

Ta có: AF+FM=AM

AE+EB=AB

mà AF=AE và AM=AB

nên FM=EB

Xét ΔCMB có

D là trung điểm của CB

DF//MB

Do đó: F là trung điểm của CM

=>CF=FM

=>CF=FM=EB

23 tháng 1

phần c đâu ạ

 

12 tháng 2 2016

a ) xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)

ta có: cạnh huyền BD chung

         góc ABD= góc HBD (vì BD  là phân giác góc B)

=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)

<=>BA=BH (2 cạnh tương ứng)

: -Kéo dài EK cắt đường thẳng vuông góc với AB kẻ từ B tại Q.

-Chứng minh được: AB=AE=BQ. Mà theo phần a), ta có: BA=BH => BH=BQ.

=> tam giác BHK= tam giác BQK( cạnh huyền- cạnh góc vuông).

=> góc HBK= góc QBK. Mà theo phần a), ta có: góc ABD= góc DBH.

=> góc DBK= 1/2.góc ABD. Mà góc ABD= 90 độ.

=> góc DBK=45 độ.(đpcm)

8 tháng 3 2017

ve hinh ban oi

15 tháng 4 2022

server ko ai nói chuyện :<<<

15 tháng 4 2022

là sao