Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABH và tam giác ACH có:
góc ABH = góc ACH ( tam giác ABC cân tại A)
AH chung
góc BAH = góc CAH ( đường phân giác AH)
=> tam giác ABH = tam giác ACH(g.c.g)
b,Xét tam giác AKH và tam giác AIH có:
góc KAH = góc IAH (đường phân giác AH)
AH chung
góc HKA = góc HIA = 90 độ
=> tam giác AKH = tam giác AIH(g.c.g)
=> HK = HI ( 2 cạnh tương ứng )
Vì AH là đường phân giác trong tam giác ABC cân tại A
=> AH là đường cao của tam giác ABC => AH vuông với BC
=> AH là đường trung tuyến của tam giác ABC=>BH=CH
Xét tam giác BHK và tam giác CHI có:
góc HBK = góc HCI ( tam giác ABC cân tại A)
KH = IH( chứng minh trên )
góc BKH = góc CIH = 90 độ
=>tam giác BHK = tam giác CHI(g.c.g)
=>BK=CI(2 cạnh tương ứng)
c,chứng minh j kia bạn
a, sét tam giác ABH và tam giác ACH có: AB=AC(gt); góc ABC= góc ACB(gt); BH=CH(gt)
suy ra 2 tam giác đó bằng nhau
suy ra góc AHB=góc AHC=180 độ chia 2=90 độ
hay AH vuông góc vs BC
b, xét tam giác ADH và tam giác AIH có: góc DAH = góc IAH(do tam giác ABH= tam giác ACH); AD=AI (do AB=AC;BD=CI); AH chung
suy ra 2 tam giác đó bằng nhau
suy ra góc DHA= góc IHA
suy ra đpcm
A B C H E D I
a) xét tam giác AHB và tam giác AHD ta có
AH=AH ( cạnh chung)
BH=HD(gt)
góc AHB= góc AHD (=90)
-> tam giác AHB= tam giác AHD (c-g-c)
b) ta có
DE vuông góc AC (gt)
AB vuông góc AC ( tam giác ABC vuông tại A)
-> DE//AB
ta có
AC>AB (gt)
-> góc ABC > góc ACB ( quan hệ cạnh góc đối diện trong tam giác)
c) Xét tam giác AHB và tam giác IHD ta có
AH=HI (gt)
BH=HD(gt)
góc AHB= góc IHD (=90)
-> tam giac AHB = tam giác IHD (c-g-c)
-> góc BAH= góc HID ( 2 góc tương ứng )
mà 2 góc nẳm ở vị trí sole trong
nên BA//ID
ta có
BA//ID (cmt)
BA//DE (cm b)
-> ID trùng DE
-> I,E,D thẳng hàng
GT | Cho △ABC vuông tại A có AB = 9cm; BC = 15 cm |
KL | a) Tính AC b) H ∈ BC sao cho BA = BH; HI _|_ BC (I ∈ AC). CM : △ABI = △HBI c) HI ∩ BA = {F} . CM : IF = IC d) CM : IF > HI |
9cm 15cm A B C H I F
a) Áp dụng định lí Pythagoras vào △ABC, ta có :
BC2 = AB2 + AC2
\(\Rightarrow\)152 = 92 + AC2
\(\Rightarrow\)AC2 = 144
\(\Rightarrow\)AC = 12
Vậy độ dài cạnh AC là 12 cm
b) Xét △ABI và △HBI có :
IB chung
BA = BH (gt)
\(\Rightarrow\) △ABI = △HBI (cạnh huyền-góc nhọn)
[ĐPCM]
c) Ta có : △ABI = △HBI
\(\Rightarrow\)IA = IH (cặp cạnh tương ứng)
Xét △AIF và △HIC có :
IA = IH (Chứng minh trên)
^AIF = ^HIC (Đối đỉnh)
\(\Rightarrow\)△AIF = △HIC (Cạnh góc vuông-Góc nhọn kề)
\(\Rightarrow\)IF = IC (Cặp cạnh tương ứng)
[ĐPCM]
d) Xét △IBC có H ∈ BC
\(\Rightarrow\)IC > HI
\(\Rightarrow\)IF > HI (Vì IF = IC)
[ĐPCM]
a: Xét ΔCAH vuông tại A và ΔCIH vuông tại I có
CH chung
\(\widehat{ACH}=\widehat{ICH}\)
Do đó: ΔCAH=ΔCIH
b: ta có: ΔCAH=ΔCIH
nên HA=HI
c: Xét ΔAHM vuông tại A và ΔIHB vuông tại I có
HA=HI
\(\widehat{AHM}=\widehat{IHB}\)
Do đó; ΔAHM=ΔIHB
Suy ra: HM=HB
mà HB>HI
nên HM>HI