K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2023

a, Xét tam giác ABH và tam giác ACH có:

góc ABH = góc ACH ( tam giác ABC cân tại A)

AH chung

góc BAH = góc CAH ( đường phân giác AH)

=> tam giác ABH = tam giác ACH(g.c.g)

b,Xét tam giác AKH và tam giác AIH có:

góc KAH = góc IAH (đường phân giác AH)

    AH chung

góc HKA = góc HIA = 90 độ

=> tam giác AKH = tam giác AIH(g.c.g)

=> HK = HI ( 2 cạnh tương ứng )

Vì AH là đường phân giác trong tam giác ABC cân tại A

=> AH là đường cao của tam giác ABC => AH vuông với BC

=> AH là đường trung tuyến của tam giác ABC=>BH=CH

Xét tam giác BHK và tam giác CHI có:

góc HBK = góc HCI ( tam giác ABC cân tại A)

  KH = IH( chứng minh trên )

góc BKH = góc CIH = 90 độ

=>tam giác BHK = tam giác CHI(g.c.g)

=>BK=CI(2 cạnh tương ứng)

c,chứng minh j kia bạn 

 

6 tháng 5 2023

c là chứng minh 1/2(KM+NI)<AM

 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A

a) Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{KAC}\) chung

Do đó: ΔAHB=ΔAKC(cạnh huyền-góc nhọn)

⇒AH=AK(hai cạnh tương ứng)

b) Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

\(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(dấu hiệu nhận biết hai đường thẳng song song)

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
NM
12 tháng 1 2022

ta có:

undefined

8 tháng 5 2016

??????

20 tháng 8 2016

bài này mình học

rùi nhưng ko nhớ

7 tháng 4 2022

a) Hai tam giác vuông ABH và ACH có:

AB=AC(gt)

AH cạnh chung.

Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)

Suy ra HB=HC

b) Xét △BIH và △CKH có:

∠I=∠K=90o

HB=HC(cmt)

∠B=∠C(vì tam giác ABC cân tại A)

⇒ △BIH và △CKH(ch-gn)

⇒ BI=CK(2 cạnh tương ứng)