K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Hình bạn tự vẽ nhé

a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:

\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)

Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)

Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)

b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:

\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=CH^2+AH^2\)

hay \(CH^2=AC^2-AH^2\)

Ta có: \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)

nên \(AB^2+CH^2=AC^2+BH^2\)(đpcm)

15 tháng 2 2018

a, Ta có góc BAC=BAH ( vì cùng phụ với góc ABH )

b, => Cần chứng minh \(AB^2-BH^2=AC^2-CH^2\) (1)

Theo định lý Py-ta-go : 

Trong tam giác vuông AHB có : \(AB^2-BH^2=AH^2\)


Trong tam giác vuông AHC có : \(AC^2-HC^2=AH^2\)

=> VT= VP => (1) đúng đpcm

15 tháng 2 2018

a) Góc bằng \(\widehat{C}\) là \(\widehat{BAH}\)

b) Xét 

1 tháng 3 2017

m×nh hocp 4 th× m×nh chÞu

DM
31 tháng 1 2018

Áp dụng định lí Pitago cho 3 tam giác vuông ABH,ACH,ABC ta có:

                                                \(AH^2+BH^2=AB^2\)

                                               \(AH^2+CH^2=AC^2\)

                                              \(AB^2+AC^2=BC^2\)

Cộng theo vế ba đẳng thức trên và rút gọn ta được    \(2AH^2+BH^2+CH^2=BC^2\).