Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có:
Xét trong tam giác vuông BHA vuông tại H có:
\(\widehat{BAH}+\widehat{ABH}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-\widehat{B}\)(1)
Xét trong tam giác vuông ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{B}\)(2)
Từ (1) và (2)
=> \(\widehat{BAH}=\widehat{ACB}=\widehat{C}\)
b) Phần b mình nghĩ bạn viết sai đề rồi nhé
Mình nghĩ đề sửa lại phải là: \(AB^2+CH^2=AC^2+BH^2\)
Xét tam giác vuông AHB vuông tại H có:
\(AB^2=BH^2+AH^2\)\(\Rightarrow AB^2-BH^2=AH^2\left(3\right)\)
Xét tam giác vuông AHC vuông tại H có:
\(AC^2=CH^2+AH^2\)\(\Rightarrow AC^2-CH^2=AH^2\)(4)
Từ (3) và (4)
=> \(AB^2-BH^2=AC^2-CH^2\)
<=> \(AB^2+CH^2=AC^2+BH^2\)
=> ĐPCM
Học tốt!!!!
a) Ta có : \(\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=90^o\) (1)
Do tam giác AHC vuông ở H \(\Rightarrow\widehat{C}+\widehat{A_2}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A_1}=\widehat{C}\)
b) Áp dụng định lý Pytago trong tam giác ta có :
\(AB^2=AH^2+BH^2\)
\(AC^2=AH^2+HC^2\)
Lại có : \(BH^2+AH^2+CH^2=CH^2+BH^2+AH^2\)
\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\) ( đpcm )
a: Xét ΔABC có AC>AB
nên góc B>góc C
b: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
c: góc B+góc C=90 độ
góc HAC+góc C=90 độ
=>góc B=góc HAC
góc C+góc B=90 độ
góc HAB+góc B=90 độ
=>góc C=góc HAB
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
Hình bạn tự vẽ nhé
a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:
\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)
Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)
Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)
b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:
\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
a, Ta có góc BAC=BAH ( vì cùng phụ với góc ABH )
b, => Cần chứng minh \(AB^2-BH^2=AC^2-CH^2\) (1)
Theo định lý Py-ta-go :
Trong tam giác vuông AHB có : \(AB^2-BH^2=AH^2\)
Trong tam giác vuông AHC có : \(AC^2-HC^2=AH^2\)
=> VT= VP => (1) đúng đpcm
a) Góc bằng \(\widehat{C}\) là \(\widehat{BAH}\)
b) Xét