Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có góc BAC=BAH ( vì cùng phụ với góc ABH )
b, => Cần chứng minh \(AB^2-BH^2=AC^2-CH^2\) (1)
Theo định lý Py-ta-go :
Trong tam giác vuông AHB có : \(AB^2-BH^2=AH^2\)
Trong tam giác vuông AHC có : \(AC^2-HC^2=AH^2\)
=> VT= VP => (1) đúng đpcm
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Bài làm:
Ta có:
Xét trong tam giác vuông BHA vuông tại H có:
\(\widehat{BAH}+\widehat{ABH}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-\widehat{B}\)(1)
Xét trong tam giác vuông ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{B}\)(2)
Từ (1) và (2)
=> \(\widehat{BAH}=\widehat{ACB}=\widehat{C}\)
b) Phần b mình nghĩ bạn viết sai đề rồi nhé
Mình nghĩ đề sửa lại phải là: \(AB^2+CH^2=AC^2+BH^2\)
Xét tam giác vuông AHB vuông tại H có:
\(AB^2=BH^2+AH^2\)\(\Rightarrow AB^2-BH^2=AH^2\left(3\right)\)
Xét tam giác vuông AHC vuông tại H có:
\(AC^2=CH^2+AH^2\)\(\Rightarrow AC^2-CH^2=AH^2\)(4)
Từ (3) và (4)
=> \(AB^2-BH^2=AC^2-CH^2\)
<=> \(AB^2+CH^2=AC^2+BH^2\)
=> ĐPCM
Học tốt!!!!
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
mình thấy đề hơi thiếu dữ kiện thì phải
a) Ta có : \(\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=90^o\) (1)
Do tam giác AHC vuông ở H \(\Rightarrow\widehat{C}+\widehat{A_2}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A_1}=\widehat{C}\)
b) Áp dụng định lý Pytago trong tam giác ta có :
\(AB^2=AH^2+BH^2\)
\(AC^2=AH^2+HC^2\)
Lại có : \(BH^2+AH^2+CH^2=CH^2+BH^2+AH^2\)
\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\) ( đpcm )