Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé
a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:
\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)
Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)
Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)
b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:
\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)
mình thít toán nhưng hong đồng ngĩa là mình giỏi toán
https://lazi.vn/edu/exercise/cho-tam-giac-abcab-ac-goc-a-90-do-bh-ac-chung-minh-ac2-ab2-bc2-3bh2-2ah2-ch2
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
1) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
a) Xét hai tam giác vuông AHB và AHC có:
Cạnh AH chung
AB = AC (Tam giác ABC cân tại A)
\(\Rightarrow\Delta AHB=\Delta AHC\) (Cạnh huyền - cạnh góc vuông)
b) Do \(\Delta AHB=\Delta AHC\Rightarrow\widehat{MAH}=\widehat{NAH}\)
Xét hai tam giác vuông AMH và ANH có:
Cạnh AH chung
\(\widehat{MAH}=\widehat{NAH}\)
\(\Rightarrow\Delta AMH=\Delta ANH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AM=AN\)
c) Xét tam giác AMN cân tại A nên \(\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\)
Tam giác ABC cũng cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)
Suy ra \(\widehat{AMN}=\widehat{ABC}\)
Chúng lại ở vị trí đồng vị nên MN // BC.
d) Xét hai tam giác vuông BMH và CNH có:
BH = CH (Do \(\Delta AHB=\Delta AHC\))
\(\widehat{MBH}=\widehat{NCH}\)
\(\Rightarrow\Delta BMH=\Delta CNH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow MH=NH\)
\(\Rightarrow MH^2=NH^2\Rightarrow BH^2-MB^2=AH^2-AN^2\)
\(AH^2+BM^2=AN^2+BH^2\)
a, Ta có góc BAC=BAH ( vì cùng phụ với góc ABH )
b, => Cần chứng minh \(AB^2-BH^2=AC^2-CH^2\) (1)
Theo định lý Py-ta-go :
Trong tam giác vuông AHB có : \(AB^2-BH^2=AH^2\)
Trong tam giác vuông AHC có : \(AC^2-HC^2=AH^2\)
=> VT= VP => (1) đúng đpcm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=CH^2+AH^2\)
hay \(CH^2=AC^2-AH^2\)
Ta có: \(AB^2+CH^2=AH^2+BH^2+AC^2-AH^2\)
nên \(AB^2+CH^2=AC^2+BH^2\)(đpcm)