K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

A D E C B F

Không mất tính tổng quát. g/s : AC>AB

Trên đoạn AB lấy F sao cho AE=AF

Xét tam giác AED và tam giác AFD có:

AE=AF

AD chunh 

^EAD=^FAD ( DA là phân giác góc A)

=> Tam giác AED =Tam giác FFD

=> DE=DF (1)

Ta lại có: 

^DFB =^DAF+^ADF =^DAE+^ADE=^CED ( các cặp góc bằng nhau, tính chất góc ngoài của tam giác)

=> ^DFB=^CED

mà ^CED=^CBA ( cùng phụ góc ECD)

=> ^DFB=^CBA 

=> Tam giác DFB cân

=> DF=DB (2)

Từ (1) , (2) => DE=DB  và ED vuông BD

=> Tam giác BDE vuông cân 

b) Tam giác BDE vuông cân

=> ^^DBE=^DEB=45^o

+)Xét tam giác AEB có: ^EAB =90^o; ^BEA=^BCE+^CBE=^ACB+^DBE=30^o+45^o=75^o (tính chất góc ngoài)

=> ^EBA=90^o-^EAB=90^o-75^o=15^o

+)Xét tam giác CED vuông tại D có góc C bằng 30 độ

=> CE=2ED=\(2\sqrt{3}\)

Áp dụng định lí pitago

CD^2=CE^2-ED^2=9 => CD=3

Tam giác EDB vuông cân

\(DB=DE=\sqrt{3}\)

Áp dụng định li pitago

\(EB^2=DB^2+DE^2=6\Rightarrow EB=\sqrt{6}\)

Trog tam giác BEC có: \(EC=2\sqrt{3};BC=3+\sqrt{3};BE=\sqrt{6}\)

12 tháng 5 2022

Tham khảo:

undefined

12 tháng 5 2022

refer

undefined

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC>DE

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

25 tháng 3 2022

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

BC2=AB2+AC2

⇔BC2=32+42=25=52

sorry bt mỗi câu a hoi

gianroi

25 tháng 3 2022

ok nha đợi minh một lát

a: Ta có:ΔABC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BAC}+50^0=90^0\)

=>\(\widehat{BAC}=40^0\)

b: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có

AB chung

\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)

Do đó: ΔFAB=ΔEBA

d: Sửa đề: I là trung điểm của BA

Xét tứ giác AFBE có

AF//BE

AE//BF

Do đó: AFBE là hình bình hành

=>AB cắt FE tại trung điểm của mỗi đường

mà I là trung điểm của AB

nên I là trung điểm của FE

=>F,I,E thẳng hàng

12 tháng 1

hình vẽ đâu bạn 

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

DO đó: ΔBAD=ΔBED

Suy ra: BA=BE

hay ΔBAE cân tại B