K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

a) Ta có: NB = NC (gt); ND = NA (gt)

⇒ Tứ giác ABDC là hình bình hành

có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.

b) Ta có: AI = IC (gt); NI = IE (gt)

⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.

Vậy tứ giác AECN là hình thoi.

c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.

Tương tự G’ là trọng tâm của hai tam giác ACD

⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’

d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)

Lại có: BG = GG’ = CG’ (tính chất trọng tâm)

⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD

(chung đường cao kẻ từ D và đáy bằng nhau)

Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))

⇒SDGG' = 24/3 = 8(cm2)

23 tháng 12 2022

SDGB là S tam giác DGB pk ạ ?

9 tháng 3 2020

Bạn tự vẽ hình nha :))

a) Xét tứ giác ABCD có :

NB = NC ( N là trung điểm của BC ( gt ))

NA = ND ( D đối xứng với A qua N ( gt ))

BC giao AD tại N

=> Tư giác ABCD là hình bình hành ( dhnb )

mà \(\widehat{BAC}=90^0\) ( \(\Delta ABC\)vuông tại A (gt))

=> Tứ giác ABCD là HCN ( dhnb )

b) Xét tam giác ABC có :

N là trung điểm của BC ( gt )

I là trung điểm của AC ( gt )

=> NI là đường trung bình của tam giác ABC ( đ/n )

=> NI // AB ( t/c )

=> \(\widehat{BAC}=\widehat{NIC}=90^0\) ( đồng vị )

=> NI \(\perp\)AC

Xét tứ giác ANCE có :

IA = IC ( I là trung điểm của AC (gt))

IN = IE ( E đối xứng N qua I (gt))

AC giao NE tại I

=> Tứ giác ANCE là hình bình hành ( dhnb )

mà NI \(\perp\)AC ( cmt )

=> Tứ giác ANCE là hình thoi ( dhnb )

c) Xét tam giác ABD có :

DM là đường trung tuyến

BN là đường trung tuyến

DM giao BN tại G

=>  G là trọng tâm.

\(\Rightarrow BG=\frac{2}{3}BN\) mà \(BN=\frac{1}{2}BC\) ( ABCD là HCN (a))

\(\Rightarrow BG=\frac{1}{3}BC\)

CM tương tự, ta có : \(CH=\frac{1}{3}BC\)

\(\Rightarrow BG=CH\left(=\frac{1}{3}BC\right)\)

10 tháng 3 2020

Thanks

a: Xét tứ giác ABDC có

N là trung điểm của AD

N là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

b: Xét tứ giác ANCE có

I là trung điểm của AC

I là trung điểm của NE

Do đó: ANCE là hìnhbình hành

mà NA=NC

nen ANCE là hình thoi

28 tháng 12 2020

tui chỉ làm phần d thôi nha, mấy câu trên cậu tự chứng minh nhé 

Hình tự vẽ 

Lấy M là trung điểm của CK

mà có I là tđ của HK

suy ra MI là đường trung bình tam giác HKC và MI song song với CH

mà CH lại vuông góc với HF ( tự c/m) nên MI vuông góc với HF 

Xét tam giác HFM có I là trực tâm ( tự ghi rõ ) suy ra FI vuông góc với HM mà có

M là tđ CK, H là tđ BC ( tự c/m) suy ra đường trung bình nên HM song song với BK suy ra đpcm 

tui chỉ ghi qua thui, cậu tự trình bày rõ ràng nhé 

mấy cái tự c/m ko dài đâu, đều hiện lên trên hình cậu vẽ rùi, đều có sẵn chỉ cần vài dòng thui, đừng lười, THI TỐT NHẾ

MAI TUI THI TOÁN VỚI ANH ĐÓ, THANKS VÌ ĐỀ BÀI RẤT HAY NHA.

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BECb) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?c) CM: Tứ giác ABEF là hình thang când) Điểm C có là trực tâm của tam giác...
Đọc tiếp

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY

  • 1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA

a) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC

b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?

c) CM: Tứ giác ABEF là hình thang cân

d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?

  • 2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC. 

a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau

d) Tính diện tích tam giác ADE theo diện tích tam giác ABC

  • 3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.

a) CM: Tứ giác ABDC là hình thoi

b) CM: Tứ giác AMCE là hình chữ nhật

c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE

d) CM: AK,CI,EM đồng quy

  • 4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.

a) CMR: BM song song với DN

b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.

  • 5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.

a) CM : Tứ giác ABDC là hình thoi

b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành

c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật

d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF

  • 6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.

a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành

b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK

c) CM: ba điểm E,H,K thẳng hàng

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE