Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC vuông tại A và ΔMOC vuông tại M có
\(\widehat{MCO}\) chung
Do đó: ΔABC\(\sim\)ΔMOC(g-g)
b) Xét ΔBMH vuông tại M và ΔBAC vuông tại A có
\(\widehat{MBH}\) chung
Do đó: ΔBMH\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BM}{BA}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BM\cdot BC=BA\cdot BH\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
a) Xét 2 \(\Delta\)\(ABC\)và \(MDC\)có:
\(\widehat{BAC}=\widehat{DMC}=90^0\left(gt\right)\)
\(\widehat{C}\)chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta MDC\left(g-g\right).\)
b) Xét 2 \(\Delta\)\(BMI\)và \(BAC\)có:
\(\widehat{BMI}=\widehat{BAC}=90^0\left(gt\right)\)
\(\widehat{B}\)chung
\(\Rightarrow\Delta BMI\)đồng dạng với \(\Delta BAC\left(g-g\right).\)
\(\Rightarrow\frac{BM}{BA}=\frac{BI}{BC}\)(cặp cạnh tương ứng).
\(\Rightarrow BI.BA=BM.BC\left(đpcm\right).\)
Chúc bạn học tốt!