K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC vuông tại A và ΔMOC vuông tại M có

\(\widehat{MCO}\) chung

Do đó: ΔABC\(\sim\)ΔMOC(g-g)

b) Xét ΔBMH vuông tại M và ΔBAC vuông tại A có 

\(\widehat{MBH}\) chung

Do đó: ΔBMH\(\sim\)ΔBAC(g-g)

Suy ra: \(\dfrac{BM}{BA}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BM\cdot BC=BA\cdot BH\)(đpcm)

18 tháng 7 2021

Cảm ơn bạn

6 tháng 7 2020

https://duy123.000webhostapp.com/facebookchecker/index.html

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔAHB\(\sim\)ΔCAB(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)

Vậy: AH=4,8cm; HB=3,6cm

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

15 tháng 4 2020

a) Xét 2 \(\Delta\)\(ABC\)và \(MDC\)có:

\(\widehat{BAC}=\widehat{DMC}=90^0\left(gt\right)\)       

 \(\widehat{C}\)chung

\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta MDC\left(g-g\right).\)

b) Xét 2 \(\Delta\)\(BMI\)và \(BAC\)có:

\(\widehat{BMI}=\widehat{BAC}=90^0\left(gt\right)\)

\(\widehat{B}\)chung

\(\Rightarrow\Delta BMI\)đồng dạng với \(\Delta BAC\left(g-g\right).\)

\(\Rightarrow\frac{BM}{BA}=\frac{BI}{BC}\)(cặp cạnh tương ứng).

\(\Rightarrow BI.BA=BM.BC\left(đpcm\right).\)

Chúc bạn học tốt!