Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M là trung điểm BC
=> MB = MC
tia đối MB lấy D cho MD = MB
=> C và D chung một điểm
=> không tạo được tam giác
hình như đề sai bạn ơi
a: Xét tứ giác ABCD có
m là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC
b: ABCD là hình bình hành
=>AB//CD
=>CD vuông góc AC
c: Xét tứ giác ABNC có
AB//NC
AC//BN
=>ABNC là hình bình hành
=>BN=AC; AB=NC
Xét ΔBAM vuông tại A và ΔNCM vuông tại C có
MA=MC
BA=CN
=>ΔBAM=ΔNCM
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
a) Xét ΔΔBMC và ΔΔDMA có:
BM = DM (gt)
BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)
MC = MA (suy từ gt)
=> ΔΔBMC = ΔΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔΔBMC = ΔΔDMA (câu a)
nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔΔDCA và ΔΔBAC có:
CA chung
CADˆCAD^ = ACBˆACB^ ( cm trên)
DA = BC (cm trên)
=> ΔΔDCA = ΔΔBAC (c.g.c)
=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)
Do đó CD ⊥⊥ AC
c) .................
Giải
a) Xét ΔBMC và ΔDMA có:
BM = DM (gt)
BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)
MC = MA (suy từ gt)
=> ΔBMC = ΔDMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì ΔBMC = ΔDMA (câu a)
nên \(\widehat{BCA}=\widehat{CAD}\)= \(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)
Xét ΔDCA và ΔBAC có:
CA chung
\(\widehat{CAD}\)= \(\widehat{ACB}\)(cm trên)
DA = BC (cm trên)
=> ΔDCA = ΔBAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)
Do đó CD ⊥ AC
c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)
Xét tam giác BND vuông tại N có:
NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM
Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:
AM = CM (gt)
NM = BM (cmt)
=> ΔABM=ΔCNM(ch−1cgv) (đpcm)
# mui #
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Xét \(\Delta AMB;\Delta CMD\) có :
\(AM=MC\left(gt\right)\)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
\(BM=MD\left(gt\right)\)
=> \(\Delta AMB=\Delta CMD\) (c.g.c)
b) Xét \(\Delta AMD;\Delta CMB\) có :
\(BM=MD\left(gt\right)\)
\(\widehat{BMC}=\widehat{DMA}\) (đối đỉnh)
\(AM=MC\left(gt\right)\)
=> \(\Delta AMD=\Delta CMB\) (c.g.c)
=> \(\left\{{}\begin{matrix}\widehat{MBC}=\widehat{MDA}\\\widehat{M}CB=\widehat{MAD}\end{matrix}\right.\) (2 góc tương ứng)
Mà : Các góc này ở vị trí so le trong
=> \(\text{AD//BC}\left(đpcm\right)\)
Bạn tự vẽ hình nha!
a) \(\Delta\)AMB và \(\Delta\)CMD có: \(\left\{{}\begin{matrix}AM=CM\\\widehat{AMB}=\widehat{CMD}\\MB=MD\end{matrix}\right.\) (đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c.g.c\right)\)
b) Chứng minh tương tự câu a, ta được:
\(\Delta BMC=\Delta DMA\left(c.g.c\right)\)
\(\Rightarrow\widehat{BCM}=\widehat{DAM}\) (2 góc tương ứng)
\(\Rightarrow AD//BC\) (vì có cặp góc so le trong bằng nhau)
c) \(\Delta\)ABC vuông tại A nên \(\widehat{ABC}+\widehat{BCA}=90^o\) (1)
\(\Delta\) HMC vuông tại H nên \(\widehat{HMC}+\widehat{HCM}=90^o\) hay
\(\widehat{HMC}+\widehat{BCA}=90^o\) (2)
Từ (1) và (2) suy ra: \(\widehat{ABC}=\widehat{HMC}\)