K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

tham khảo nhé . 

 gọi K là giao điểm của ED và BC , vẽ DM vuông góc với AH ở M. 
Ta có DM // BC ( tự cm ) => MD /CH = AD / AC = AM / AH = 1 / 3 ( do AD = 1/3 AC ) 
=> MD = CH/3 ( * ) và AM = AH/3 = EH ( do EH = AH/3 ) 
ta có AM = EH /3 => AM = MH / 2 = EH => EH = EM / 3
ta lại có HK / MD = EH / EM = 1/ 3 ( ** ) 
từ ( *) và ( ** ) ta có HK = CH / 9 . 
ta có AH^2 = BH.CH = 9 (EH^2) = BH.9HK 
=> EH^2 = BH.HK => tam giác BEK vuông ở E mà D thuộc EK nên BÊD = 90. 

14 tháng 10 2022

*Kẻ DM ⊥ AH ( M ∈ AH )
 Xét △AHC có : MD // BC 
=> AM/AH = AD/AC ( Ta-lét)
=> AM/AH=HE/AH ( = AD/AC = 1/3 )
=> AM = HE
 Ta có : AH + HE - AM = MH => AH = MH
 Xét △EMD ( góc EMD = 90 ) 
=> ME^2 + MD^2 = DE^2 ( Pytago )                             (1)
Tương tự với các : +△BHE => BE^2 = BH^2 + HE^2   (2)
                              +△ABH => BH^2 = AB^2 - AH^2
                              +△AMD => MD^2 = AD^2 - AM^2
                              +△ABD => BD^2 = AB^2 + AD^2
Cộng (1) với (2), ta đc : 
   DE^2 + BE^2 = ME^2 + MD^2 + BH^2 - HE^2
<=> DE^2 + BE^2 = AH^2 + AD^2 - AM^2 + AB^2- AH^2 + AM^2
<=> DE^2 + BE^2 = AD^2 + AB^2
=> DE^2 + BE^2 = BD^2
=> △BDE vuông tại E ( Pytago đảo )
=> góc BED = 90 -> đcpcm
( Có thể có sai sót lúc làm mong đóng góp ) =))

20 tháng 8 2020

Vẽ DF _|_ AH tại F, do đó AF=HE, HA=FE

Áp dụng đinhk lý Pytago vào các tam giác vuông HEB, FDE, HAB, FAD, ABD ta sẽ chứng minh \(BE^2+ED^2=BD^2\)

Do đó \(\Delta\)BED vuông tại E => \(\widehat{BED}=90^0\)

*Không hiểu chỗ nào inbox*

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

8 tháng 9 2017

trả lời vào đúng trọng tâm đi bạn

14 tháng 9 2019

làm giúp mik với

14 tháng 9 2019

A B C D E F H

Gợi ý: EF // BC => EF vuông AH

Áp dụng định lí Pitago

\(BE^2=AB^2+BE^2=BD^2+DE^2\)

=> \(\left(BH^2+AH^2\right)+\left(AF^2+FE^2\right)=\left(BH^2+HD^2\right)+\left(EF^2+FD^2\right)\)

=> \(HA^2+AF^2=HD^2+FD^2\)

=> \(\left(AF+FH\right)^2+AF^2=HD^2+\left(HD+FH\right)^2\) ( dùng hằng đẳng thức và rút gọn)

=> \(AF^2+AF.FH=HD^2+HD.FH\)

=> \(\left(AF^2-HD^2\right)+FH\left(AF-HD\right)=0\)

=> AF=HD