K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

ΔAHB vuông tại H có HI là đường trung tuyến thuộc cạnh huyền AB

⇒ HI = IA = 1/2 AB (tính chất tam giác vuông)

⇒ ∆ AHI cân tại I

⇒ ∠ (IAH) =  ∠ (IHA) (1)

∆ AHC vuông tại H có HK là đường trung tuyến thuộc cạnh huyền AC

⇒ HK = KA = 1/2 AC (tính chất tam giác vuông)

⇒  ∆ KAH cân tại K ⇒ ∠ (KAH) =  ∠ (KHA) (2)

∠ (IHK) =  ∠ (IHA) +  ∠ (KHA) (3)

Từ (1), (2) và (3) suy ra:  ∠ (IHK) =  ∠ (IAH) +  ∠ (KAH) =  ∠ (IAK) =  ∠ (BAC) = 90 0

30 tháng 6 2017

Hình chữ nhật

\(\widehat{IHK}=\widehat{IHA}+\widehat{AHK}\)

\(=\widehat{IAH}+\widehat{HAK}=90^0\)

5 tháng 11 2018

Vì ΔABC vuông tại A

\(\widehat{B}+\widehat{C}=90^0\) (1)

Vì AH là đường cao của ΔABC

⇒ AH ⊥ BC

\(\left\{{}\begin{matrix}\text{ ΔABH vuông tại H}\\\text{ ΔACH vuông tại H}\end{matrix}\right.\)

Vì I là trung điểm của AB

⇒ HI là đường trung tuyến của ΔABH

mà ΔABH vuông tại H

⇒ HI = AI = BI = \(\dfrac{1}{2}\)AB

Vì IB = IH

⇒ ΔBIH cân tại I

\(\widehat{B}=\widehat{IHB}\) (2)

Vì K là trung điểm của AC

⇒ HK là đường trung tuyến của ΔACH

mà ΔACH vuông tại H

⇒ HK = AK = KC = \(\dfrac{1}{2}\)AC

Vì HK = KC

⇒ ΔKHC cân tại K

\(\widehat{KHC}=\widehat{C}\) (3)

Từ (1), (2), (3) ⇒ \(\widehat{IHB}+\widehat{KHC}=90^0\)

Ta có \(\widehat{IHB}+\widehat{IHK}+\widehat{KHC}=90^0\)

\(\widehat{IHK}+90^0=180^0\)

\(\widehat{IHK}=90^0\)

Vậy \(\widehat{IHK}=90^0\)

2 tháng 1 2017

Cứ áp dụng tính chất đường trung tuyến trong tam giác vuông là ra ah

1 tháng 1 2017

8 đúng 100%

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

25 tháng 12 2023

a) xét tứ giác AMDN có 
MAN = 90độ (ABC vuông tại A)
DMA = 90độ (DM vuông góc AB,M thuộc AB)
DNA = 90độ (DN vuông góc AC,N thuộc AC)
⇒Tứ giác AMDN là hình chữ nhật (T/c)
⇒AD=MN(T/c hình chữ nhật)(đpcm)

31 tháng 12 2023

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

=>AMDN là hình chữ nhật

=>AD=MN

b: Gọi O là giao điểm của AD và MN

Vì AMDN là hình chữ nhật

nên AD cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AD và MN

Ta có: AD=MN

\(OA=OD=\dfrac{AD}{2}\)

\(OM=ON=\dfrac{MN}{2}\)

Do đó: OA=OD=OM=ON=AD/2=MN/2

Ta có: ΔHAD vuông tại H

mà HO là đường trung tuyến

nên \(HO=\dfrac{AD}{2}\)

mà AD=MN

nên \(HO=\dfrac{MN}{2}\)

Xét ΔNMH có

HO là đường trung tuyến

\(HO=\dfrac{MN}{2}\)

Do đó: ΔNHM vuông tại H

=>\(\widehat{MHN}=90^0\)

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

b: Xét tứ giác NKIM có

D là trung điểm của NI

D là trung điểm của KM

Do đó: NKIM là hình bình hành

mà NI vuông góc với KM

nên NKIM là hình thoi

c: Xét ΔABC có DN//AB

nên DN/AB=CN/CA=CD/CB

=>CN=1/2CA
hay N là trung điểm của AC

Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2

hay BM=1/2BA
=>M là trung điểm của AB

Ta có: ΔAHB vuông tại H 

mà HM là đường trung tuyến

nên MA=MH

Ta có: ΔAHC vuông tại H

mà HN là đừog trung tuyến

nên HN=AN

Xét ΔMAN và ΔMHN có

MA=MH

AN=HN

MN chung

Do đó: ΔMAN=ΔMHN

Suy ra:góc MHN=90 độ