K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có AH là đường cao

nên AC^2=CH*CB

=>CB=3^2/1,8=5cm

AB=căn 5^2-3^2=4cm

Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{90}{2}\right)\)

\(=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12\sqrt{2}}{7}\left(cm\right)\)

29 tháng 10 2021

a: \(AH=\sqrt{1.8\cdot3.2}=2.4\left(cm\right)\)

AB=3(cm)

AC=4(cm)

DB/DC=AB/DC

DB+DC=BC

=>DB=5-20=-15 là sai đề rồi bạn

BC>DC là sai đề rồi bạn

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=35^2-21^2=784\)

hay AC=28cm

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

\(\Leftrightarrow\widehat{ACB}=37^0\)

8 tháng 10 2021

b)\(\text{Gọi DE⊥AB}\)\(\text{→DE//AC}\)

Vì AD là tia phân giác của tam giác ABC

\(\Rightarrow BAD=DAC=\dfrac{1}{2}BAC=45^0\)

\(\Rightarrow EAD=45^0\)

\(\Rightarrow TamgiácAEDvuôngcântạiE\)

\(\rightarrow AD=AE\sqrt{2}\)

Mak AD là tia phân giác

\(\dfrac{\Rightarrow DB}{DC}=\dfrac{AB}{AC}=\dfrac{4}{3}\)

Mak\(\dfrac{DB}{DC}=\dfrac{EB}{AE}\left(địnhlýTalet\right)\)

\(\dfrac{\Rightarrow EB}{AE}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{AE}{AE+EB}=\dfrac{3}{7}\)

\(\Rightarrow\dfrac{AE}{AB}=\dfrac{3}{7}\Rightarrow AE=\dfrac{3}{7}.AB=\dfrac{12}{7}\)

\(\Rightarrow AD=AE.\sqrt{2}=\dfrac{12}{7}.\sqrt{2}=\dfrac{12\sqrt{2}}{7}\approx2,42\)

 

8 tháng 10 2021

Xét tam giác ABC vuông tại A có AH đường cao

\(\Rightarrow AC^2=HC.BC\)

\(\Rightarrow BC=\dfrac{AC^2}{HC}=\dfrac{3^2}{1,8}=5\left(cm\right)\)

\(\Rightarrow HC=BC-HC=5-1,8=3,2\left(cm\right)\)

\(\Rightarrow AH^2=BH.HC\)

\(\Rightarrow AH^2=1,8.3,2=5,76\left(cm\right)\)

\(\Leftrightarrow AH=\sqrt{5,76}=2,4\left(cm\right)\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Leftrightarrow AB=\dfrac{AH.BC}{AC}=\dfrac{2,4.5}{3}=4\left(cm\right)\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi