Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)-Xét tam giác KAB và tam giác KMB có:KA=KM(GT)
BK chung(GT)
góc AKB=gócMKB(GT)
=>tam giác KAB=tam giác KMB(c.g.c)
-Do AK_I_BC=>góc AKB=90 độ,mà góc B=30 độ=>góc MAB=60 độ
Mik làm được phần 1 thôi nhé !! Thông cảm nha !!!
a) Xét tam giác KAB và tam giác KMB có : KA = KM ( GT )
BK chung ( GT )
Góc AKB = Góc MKB ( GT )
=> Tam giác KAB = Tam giác KMB ( c.g.c )
Do AK_I_BC => Góc AKB = 90o , mà góc B = 30o => góc MAB = 60o
a: Xét ΔKAB vuông tại K và ΔKMB vuông tại K có
KA=KM
KB chung
Do đó: ΔKAB=ΔKMB
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MN//AC
Ta có: MN//AC
AB\(\perp\)AC
Do đó: MN\(\perp\)AB
Bài 1
a) Xét tam giác AIB và tam giác AIC
AB = AC ( gt )
AI cạnh chung
BI = IC ( gt )
=> tam giác AIB = tam giác AIC ( c - c - c )
b) Xét tam giác ABC có AB = AC => tam giác ABC cân tại A ( định nghĩa )
tam giác ABC có AI là trung tuyến đồng thời là đường cao ( t/ chất của tam giác cân )
=> AI vuông góc với BC
c) Xét tam giác ABI và tam giác KBI có:
AI = IK ( gt )
góc AIB = góc KIB ( = 90 độ )
BI :cạnh chung
=> tam giác ABI = tam giác KBI ( c - g - c )
=> AB = BK ( 2 cạnh tương ứng)
Mà AB = AC ( gt)
=> AC = BK
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
ˆABD=ˆEBDABD^=EBD^(BD là tia phân giác của ˆABEABE^)
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên ˆBAD=ˆBEDBAD^=BED^(hai góc tương ứng)
mà ˆBAD=900BAD^=900(gt)
nên ˆBED=900BED^=900
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
ˆADM=ˆEDCADM^=EDC^(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: ˆBAE=ˆBEABAE^=BEA^(hai góc ở đáy)
mà ˆBAE+ˆMAE=1800BAE^+MAE^=1800(hai góc kề bù)
và ˆBEA+ˆAEC=1800BEA^+AEC^=1800(hai góc kề bù)
nên ˆAEC=ˆEAM
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Xét tam giác AMB và tan giác DMC ta có
AM= MD (gt)
BM=MC ( M là trung điểm BC)
góc AMB = góc DMC ( 2 góc đối đỉnh)
-> tam giác AMB= tam giac DMC (c-g-c)
Xét tam giác AMC và tan giác DMB ta có
AM= MD (gt)
CM=MB ( M là trung điểm BC)
góc AMC = góc DMB ( 2 góc đối đỉnh)
-> tam giác AMC = tam giac DMB (c-g-c)
-< góc MAC= góc MDB ( 2 góc tương ứng)
mà 2 góc ở vi trí sole trong nên AC//BD
c)ta có
góc MAB= góc MDC (tam giac AMB=tam giác DMC)
mà 2 góc ở ví trí sole trong
nên AB//CD
Xét tam giác ABC và tam giác CHA ta có
AC=AC ( cạnh chung)
BC=AH (gt)
góc ACB= góc CAH ( 2 góc sole trong và AH//BC)
-> tam giac ABC= tam giác CHA(c-g-c)
-> góc BAC = góc ACH (2 góc tương ứng)
mà 2goc nằm ở vi trí sole trong
nên AB//CH
ta có
AB//CH (cmt)
AB//DC (cmt)
-> CH trùng DC
-> C,H,D thang hàng A H C B M
a: Xét ΔBKA vuông tại K và ΔBKM vuông tại K có
BK chung
KA=KM
=>ΔBKA=ΔBKM
=>góc ABK=góc MBK
Xét ΔBAC và ΔBMC có
BA=BM
góc ABC=góc MBC
BC chung
=>ΔBAC=ΔBMC
=>góc BMC=90 độ
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MD vuông góc AB