K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét ∆AHC và ∆DHC có:

+CH chung

+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)

+HA=HC(gt)

\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)

 

19 tháng 7 2023

A B C H D E K

a/ Xét tg vuông AHC và tg vuông DHC có

HC chung

HA = HD (gt)

=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)

b/ K là giao của AE và CD

Xét tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)

tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)

Xét tg vuông ABH và tg vuông AEH có

AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)

Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)

Xét tg vuông AHE có

\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)

Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)

Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)

\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC 

c/

tg ABH = tg AEH (cmt) => AB = AE

tg AHC = tg DHC (cmt) => AC = CD

Xét tg ABC có

\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)

\(\Rightarrow AE+CD>BC\)

 

 

 

 

 

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc CAB=90 độ

Do đó: ABDC là hình chữ nhật

12 tháng 8 2018

bạn có bài giải chưa vậy

12 tháng 8 2018

Mình chưa

6 tháng 4 2023

Ai giúp mình vs ạ

12 tháng 12 2020

a)

Ta có: HE=HA(gt)

mà A,H,E thẳng hàng

nên H là trung điểm của AE

Xét ΔAED có 

H là trung điểm của AE(cmt)

M là trung điểm của AD(A và D đối xứng nhau qua M)

Do đó: HM là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)

⇒HM//ED và \(HM=\dfrac{1}{2}\cdot ED\)(Định lí 2 về đường trung bình của tam giác)

b) Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)

Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)(ΔABC vuông tại A)

nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 

13 tháng 12 2020

cậu c,d lm kiểu j ạ

 

24 tháng 11 2019

a ) Xét ◇AHCE có :

D là trung điểm HE

D là trung điểm AC

\(\Rightarrow\)◇AHCE là hình bình hành

Mà góc AHC = 90°

\(\Rightarrow\)◇AHCE là hình chữ nhật

b ) Xét ◇AEIH có :

AI // HE ( giả thiết )

AE // IH ( do I \(\in\)BC và AE // BC )

\(\Rightarrow\)◇AEIH là hình bình hành

16 tháng 12 2023

a: Xét tứ giác AHBD có

O là trung điểm chung của AB và HD

=>AHBD là hình bình hành

Hình bình hành AHBD có \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

b: Ta có: AHBD là hình chữ nhật

=>AH//BD và AH=BD

Ta có: AH//BD

Q\(\in\)AH

Do đó: QH//DB

Ta có: AH=BD

AH=HQ

Do đó: BD=HQ

Xét tứ giác BDHQ có

BD//HQ

BD=HQ

Do đó: BDHQ là hình bình hành

c: Xét tứ giác ABQP có

H là trung điểm chung của AQ và BP

=>ABQP là hình bình hành

Hình bình hành ABQP có AQ\(\perp\)BP

nên ABQP là hình thoi

d: Ta có: ΔKAB vuông tại K

mà KO là đường trung tuyến

nên \(KO=\dfrac{AB}{2}\)

mà AB=HD(AHBD là hình chữ nhật)

nên \(KO=\dfrac{HD}{2}\)

Xét ΔKHD có

KO là đường trung tuyến

\(KO=\dfrac{HD}{2}\)

Do đó: ΔKHD vuông tại K

=>KH\(\perp\)KD

16 tháng 12 2023

sai đề kia

17 tháng 8 2019

Các bạn làm , vẽ hình rồi chụp nha cảm ơn ạ

a: Ta có: H và D đối xứng với nhau qua AB

nên AH=AD; BH=BD

=>ΔHAD cân tại A

=>AB là phân giác của góc HAD(1)

Ta có H và E đối xứngvới nhau qua AC

nên AH=AE; CH=CE

=>ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ

=>D,A,E thẳng hàng

b: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: góc ADB=90 độ

=>BD vuông góc với DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: góc AEC=90 độ

=>CE vuông góc với ED(4)

Từ (3) và (4) suy ra BDEC là hình thang vuông

c: ED=AE+AD
=AH+AH=2AH

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H