K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

A B C D H M c a d b

Đặt AB=b, AC=a,AD=d vậy ta CM : 1/c+1/b=\(\sqrt{2}\)/d

Từ D hạ DH vuông AC tại H và DM vuông AB tại M, dễ dàng CM được AHDM là hình vuông. => HD=DM=d.sin45 = \(\frac{d}{\sqrt{2}}\) 

Ta có S(ABC) = S(ACD) + S(ABD) 

<=> b.c/2 = HD.b/2 + DM.c/2  <=> bc = \(\frac{bd+cd}{\sqrt{2}}\)<=> \(\sqrt{2}\)bc = bd + cd

Chia 2 vế cho b.c.d ta có pt cần CM

12 tháng 12 2020

\(\frac{1}{b}+\frac{1}{c}=\frac{1}{d}\Leftrightarrow\frac{b+c}{bc}=\frac{1}{d}\Leftrightarrow d=\frac{bc}{b+c}\)

Ta có

\(HD\perp AB;AC\perp AB\) => HD//AC \(\Rightarrow\frac{BD}{BC}=\frac{HD}{AC}=\frac{d}{b}\Rightarrow d=\frac{b.BD}{BC}\) (*)

Xét tg ABC có AD là phân giác của \(\widehat{A}\) nên

\(\frac{BD}{AB}=\frac{CD}{AC}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy)

\(\Rightarrow\frac{BD}{c}=\frac{CD}{b}=\frac{BD+CD}{b+c}=\frac{BC}{b+c}\Rightarrow BC=\frac{BD.\left(b+c\right)}{c}\) Thay vào (*)

\(d=\frac{b.BD}{\frac{BD.\left(b+c\right)}{c}}=\frac{b.BD.c}{BD.\left(b+c\right)}=\frac{bc}{b+c}\Leftrightarrow\frac{1}{b}+\frac{1}{c}=\frac{1}{d}\left(dpcm\right)\)



 

21 tháng 12 2016

A B C H D K

12 tháng 3 2017

a.) từ các tia phân giác suy ra được OE/OB=AE/AB=EC/BC 

suy ra AE/c=EC/a

áp dụng tính chất dãy tỉ số bằng nhau ta có :

 AE/c=EC/a=AE+EC/c+a=AC/c+a=b/c+a

suy ra AE=bc/c+a 

tương tự ta có AF=bc/a+b

ta có OB/OE=AB/AE=c/AE

suy ra OB/OE+OB=c/AE+c (ko bik bạn học cái này chưa)

OB/BE=c/AE+c(1)

tương tự ta lại có OC/CF=b/AF+b(2)

từ (1) và (2) suy ra OB.OC/BE.CF=bc/(AE+c)(AF+b)=1/2 

nhân chéo ta có 2bc=(AE+c)(AF+b)=(bc/(c+a)+c)(bc/(a+b)+b)

2bc=(c(a+b+c)/(a+c))(b(a+b+c)/(a+b))

2bc=bc(a+b+c)^2/(a+c)(a+b)

2=(a+b+c)^2/(a+c)(a+b)

suy ra (a+b+c)^2=2(a+c)(a+b)

tách ra rút gọn còn a^2=b^2+c^2 

suy ra tam giác ABC vuông tại A