K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

a.) từ các tia phân giác suy ra được OE/OB=AE/AB=EC/BC 

suy ra AE/c=EC/a

áp dụng tính chất dãy tỉ số bằng nhau ta có :

 AE/c=EC/a=AE+EC/c+a=AC/c+a=b/c+a

suy ra AE=bc/c+a 

tương tự ta có AF=bc/a+b

ta có OB/OE=AB/AE=c/AE

suy ra OB/OE+OB=c/AE+c (ko bik bạn học cái này chưa)

OB/BE=c/AE+c(1)

tương tự ta lại có OC/CF=b/AF+b(2)

từ (1) và (2) suy ra OB.OC/BE.CF=bc/(AE+c)(AF+b)=1/2 

nhân chéo ta có 2bc=(AE+c)(AF+b)=(bc/(c+a)+c)(bc/(a+b)+b)

2bc=(c(a+b+c)/(a+c))(b(a+b+c)/(a+b))

2bc=bc(a+b+c)^2/(a+c)(a+b)

2=(a+b+c)^2/(a+c)(a+b)

suy ra (a+b+c)^2=2(a+c)(a+b)

tách ra rút gọn còn a^2=b^2+c^2 

suy ra tam giác ABC vuông tại A

8 tháng 4 2019

a xet ABC và DEC

 chung C

bAc=eDc=90 độ 

=> ABC và DEC đồng dạng (gg) (1)

b BC^2=3^2+5^2=34

=> BC= căn (34)

BD/DC=3/5

BC/DC=8/5

<=> căn 34/DC=8/5

=> DC=căn(34) *5/8

=> BD=căn(34) -DC=3(căn(34))/8

c Sabc=3*5/2=15/2

sabde= 15/2-15/2*17/32=225/64

26 tháng 5 2020

chij vào vndoc á xong rùi kéo xuống nó vẹ cho

24 tháng 5 2020

a, Xét △ABC vuông tại A và △MDC vuông tại M

Có: ∠ACB là góc chung

=> △ABC ᔕ △MDC (g.g)

b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)

=> 362 + 482 = BC2  => BC2 = 3600 => BC = 60 (cm)

Vì M là trung điểm BC (gt) => MB = MC =  BC : 2 = 60 : 2 = 30 (cm)

Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)

và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)

c, Xét △BME vuông tại M và △BAC vuông tại A

Có: ∠MBE là góc chung

=> △BME ᔕ △BAC (g.g)

\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)

 Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)

=> ME là đường trung trực BC

=> EC = BE

Mà BE = 50 (cm)

=> EC = 50 (cm)

e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)

P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi

Bài làm 

@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à. 

a) Xét tam giác ABC và tam giác MDC có:

\(\widehat{BAC}=\widehat{DMC}=90^0\)

\(\widehat{BCA}\)chung

=> Tam giác ABC ~ tam giác MDC ( g - g )

b) Xét tam giác ABC vuông tại A có:

Theo pytago có:

BC2 = AB2 + AC2 

hay BC2 = 362 + 482 

hay BC2 = 1296 + 2304

=> BC2 = 3600

=> BC = 60 ( cm )

Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )

Vì tam giác ABC ~ tam giác MDC ( cmt )

=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)

hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)

=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)

=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)

c) Xét tam giác MBE và tam giác ABC có:

\(\widehat{BME}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác MBE ~ tam giác ABC ( g - g )

=> \(\frac{ME}{AC}=\frac{BM}{AB}\)

hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)

Xét tam giác MEC vuông tại M có:

EC2 = MC2 + ME2 

hay EC2 = 302 + 402 

=> EC2 = 900 + 1600

=> EC2 = 50 ( cm )

a) Vì tam giác MDC ~ Tam giác ABC

=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)

Câu c, d và câu đ giống nhau ? 

23 tháng 3 2018

a, Xét tam giác ABC có AD là pg góc A nên 

\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{BC}{AB+AC}=\frac{4a}{2a+3a}=\frac{4}{5}\) 

=> \(\frac{BD}{AB}=\frac{4}{5}\) <=> \(\frac{BD}{2a}=\frac{4}{5}\) <=> \(BD=\frac{8a}{5}=1,6a\)

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm