Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Tự vẽ hình)
a) Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)
b) Áp dụng định lý Pytago có:
\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)
Do \(\Delta AHB\sim\Delta CAB\Rightarrow\left\{{}\begin{matrix}\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\\\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)
c) Xét \(\Delta AHB\) và \(\Delta CHA\) có:
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))
\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g) \(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=BH.CH\)
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: AH=8*6/10=4,8cm
HB=6^2/10=3,6cm
CH=10-3,6=6,4cm
S AHB=1/2*4,8*3,6=8,64cm2
S AHC=1/2*4,8*6,4=15,36cm2
a) Gọi x(cm) là độ dài cạnh DB
Áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A, ta có:
BC2= AB2 + AC2= 82 + 62= 100
=>BC=\(\sqrt{100}\)=10(cm)
Xét tam giác ABC, ta có:
AD là tia phân giác góc A
=> \(\frac{DB}{AB}=\frac{DC}{AC}hay\frac{x}{8}=\frac{10-x}{6}\)
=> 6x = 8(10-x)
<=>6x=80-8x
<=>6x + 8x=80
<=> 14x=80
<=> x= 5,72(cm)
Vậy DB= 5,72 cm
DC= 10 - 5,72= 4,28 (cm)
a. tam giác ABC có góc A = 90 độ nên
BC^2=AB^2+AC^2
=8^2+6^2=100
=>BC =10
áp dụng tính chất dãy tỉ số bằng nhau ta có :
BD/AB=DC/AC =BD+DC/AB+AC=10/14=5/7
=>BD/AB=5/7=>BD=8*5:7=40/7
=>DC/Ac=5/7=>DC=6*5/7=30/7
a) Sử dụng định lí Pita go tính đc BC=10 cm
Vì AD là phân giác góc A , D thuộc Bc nên ta có:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\Rightarrow\hept{\begin{cases}BD=\frac{4}{7}.BC=\frac{40}{7}\\CD=\frac{3}{7}.BC=\frac{30}{7}\end{cases}}\) (cm)
b) Xét tam giác AHB và tam giác CHA
có: \(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ góc ACB)
=> tam giác ABH đồng dạng tam giác CHA
c) \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.6}{10}=\frac{24}{5}\)(cm)
Xét tam giác AHB vuông và tam giác AHC vuông
Sử dụng định lí pitago để tính \(BH=\frac{32}{5};CH=\frac{18}{5}\)(cm)
\(S_{\Delta AHB}=\frac{1}{2}.AH.BH=\frac{1}{2}.\frac{24}{5}.\frac{32}{5}=\frac{384}{25}\left(cm^2\right)\)
\(S_{\Delta AHC}=\frac{1}{2}.AH.CH=\frac{1}{2}.\frac{24}{5}.\frac{18}{5}=\frac{216}{25}\left(cm^2\right)\)