K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBMN và ΔCMA có 

\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)

\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)

Do đó: ΔBMN∼ΔCMA(g-g)

b) Ta có: ΔBMN∼ΔCMA(cmt)

nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)

Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)

a: BC=căn 6^2+8^2=10cm

AM là phân giác

=>MB/AB=MC/AC

=>MB/3=MC/4=10/7

=>MB=30/7cm; MC=40/7cm

b: Xét ΔAMC và ΔNMB có

góc MAC=góc MNB

góc AMC=góc NMB

=>ΔAMC đồng dạng với ΔNMB

 

21 tháng 4 2018

a) Ta có:

AM là tai phân giác \(\widehat{BAC}\) (gt)

\(\Rightarrow\widehat{BAM}=\dfrac{\widehat{BAC}}{2}=\dfrac{90^o}{2}=45^o\)

Xét tam giác BAM vuông tại B ta có:

\(\widehat{BAM}=45^o\)(cmt)

Nên tam giác BAM vuông cân tại B

b) Ta có:

\(S_{ABNC}=\dfrac{\left(AC+BN\right).AB}{2}\)

Mà AB=BN( tam giác BAM vuông cân tại B)

Nên \(S_{ABNC}=\dfrac{\left(AC+AB\right).AB}{2}=\dfrac{\left(3+4\right).4}{2}=14\left(cm^2\right)\)

c) Xét tam giác AMC và tam giác BMN, ta có:

\(\left\{{}\begin{matrix}\widehat{CAM}=\widehat{MNB}\left(AC//BN\right)\\\widehat{ACM}=\widehat{MBN}\left(AC//BN\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AMC\sim\Delta NMB\left(g-g\right)\)

\(\Rightarrow\dfrac{MB}{MC}=\dfrac{MN}{AM}\left(tsdd\right)\)

Xét tam giác ABC ta có:

AM là tia phân giác (gt)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BM}{MC}\) (tc đường phân giác)

\(\dfrac{MB}{MC}=\dfrac{MN}{AM}\left(cmt\right)\)

Nên \(\dfrac{AB}{AC}=\dfrac{MN}{AM}\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{BA}{BC}=\dfrac{HB}{AB}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{HB}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}HB=\dfrac{9}{5}=1.8\left(cm\right)\\AH=\dfrac{12}{5}=2.4\left(cm\right)\end{matrix}\right.\)

Vậy: BC=5cm; AH=2,4cm; HB=1,8cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

29 tháng 12 2021

mong mng giúp đỡ tui ạ !

 

18 tháng 4 2016

e mới học lớp 5 thui à , chưa có giải đc loại toán như zầy , cần những người cao tay hơn ạ!!!

28 tháng 3 2023

1