K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

a: Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(BC=\dfrac{6}{sin40}\simeq9,33\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{BC^2-AB^2}\simeq7,14\)

b:

ΔBEH vuông tại H

=>\(\widehat{BEH}+\widehat{HBE}=90^0\)

=>\(\widehat{BEH}=90^0-\widehat{NBC}\)

ΔANB vuông tại A

=>\(\widehat{ANB}+\widehat{ABN}=90^0\)

=>\(\widehat{ANB}=90^0-\widehat{ABN}\)

Ta có:  \(\widehat{AEN}=\widehat{BEH}=90^0-\widehat{NBC}\)

\(\widehat{ANE}=90^0-\widehat{ABN}\)

mà \(\widehat{NBC}=\widehat{ABN}\)

nên \(\widehat{AEN}=\widehat{ANE}\)

=>AE=AN

Xét ΔABN vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{AB^2}\)

 

 

30 tháng 10 2023

a. Để tính AC và BC, ta sử dụng định lý sin trong tam giác vuông: AC = AB * sin(C) = 6 * sin(40°) ≈ 3.86 BC = AB * cos(C) = 6 * cos(40°) ≈ 4.59

b. Gọi M là trung điểm của AC. Ta có BM là đường phân giác của góc B trong tam giác ABC. K là hình chiếu của A lên BM, và E là giao điểm của AH và BM. Theo định lý hình chiếu, ta có: AE = AM * sin(B) = (AC/2) * sin(B) = (3.86/2) * sin(40°) ≈ 1.24 c. Ta cần chứng minh rằng 1/AK² = 1/AB² + 1/AE². Áp dụng định lý Pythagoras trong tam giác AKH, ta có: AK² = AH² + KH² Áp dụng định lý Pythagoras trong tam giác ABH, ta có: AB² = AH² + BH² Áp dụng định lý Pythagoras trong tam giác AEH, ta có: AE² = AH² + EH² Từ đó, ta có: AK² - AB² = (AH² + KH²) - (AH² + BH²) = KH² - BH² Vì BN là đường phân giác của góc B, nên BH = BN/2. Khi đó, ta có: AK² - AB² = KH² - (BN/2)² = KH² - BN²/4 Từ định lý hình chiếu, ta biết rằng KH = AE. Khi đó, ta có: AK² - AB² = AE² - BN²/4 Nhân cả hai vế của phương trình trên với 4, ta có: 4(AK² - AB²) = 4(AE² - BN²/4) Simplifying, ta có: 4AK² - 4AB² = 4AE² - BN² Chia cả hai vế của phương trình trên cho 4AK² * AB², ta có: 1/AK² - 1/AB² = 1/AE² - 1/BN² Từ đó, ta có: 1/AK² = 1/AB² + 1/AE² Vậy phương trình đã được chứng minh. d. Ta cần tính KHI. Vì AK cắt BC tại I, nên ta có: KHI = KBC Vì BN là đường phân giác của góc B, nên ta có: KBC = KBA = KAB

Vậy KHI = KAB.

Xét ΔANC có 

AK là phân giác

NM là trung tuyến

Ch là đường cao

AK cắt NM cắt CH tại K

=>ΔANC đều

=>NM vuông góc AC

=>góc A1+góc A2=60 độ

=>góc A3=góc A1=góc A2=30 độ

AB vuông góc AC

NM vuông góc AC

=>AB//MN

=>góc A1=góc N2

=>góc N1=góc N2=30 độ

ΔAMK vuông tại M có góc MAK=30 độ

nên góc AKM=60 độ

=>góc BNM=góc AKM

=>AK//BN

29 tháng 10 2021

b: Xét ΔACB vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(1\right)\)

Xét ΔABK vuông tại A có AK là đường cao

nên \(AB^2=BK\cdot BD\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)

a: Xét (O) có 

ΔMBC nội tiếp

BC là đường kính

Do đó: ΔMBC vuông tại M

Xét (O) có

ΔNBC nội tiếp

BC là đường kính

Do đó:ΔNBC vuông tại N

Xét ΔABC có

BN là đường cao

CM là đường cao

BN cắt CM tại H

Do đó: AH⊥BC tại K

b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có

\(\widehat{MAC}\) chung

Do đó: ΔANB∼ΔAMC

Suy ra: AN/AM=AB/AC

hay \(AN\cdot AC=AB\cdot AM\)

18 tháng 10 2021

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF(1)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=BH\cdot CH\left(2\right)\)

Từ (1) và (2) suy ra \(FE^2=BH\cdot CH\)