K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

A) ta có : ED là đường trung bình của tam giác ABC vậy ED song song với BC và ED=1/2BC*

              HK là đường trung bình của tam giác BGC vậy HK song song với BC và HK=1/2BC**

Từ *và ** suy ra : ED=HK=1/2BC; ED song song với HK

         vậy suy ra tứ giác EDHK là HBH

B) Nếu cần điều kiện từ tam giác ABC để tứ giác EDHK là HCN thì tam giác ABC cân tại A

 Vì khi tam giác ABC cân tại A thì ta sẽ có :  EB=DC

 xét tam giác EBC và tam giác DCB có :

EB=DC ( theo CM trên )

 BC cạnh chung

góc EBC = góc DCB ( vì ta đưa ra giả thiết tam giác ABC cân tại A)

vậy tam giác EBC= tam giác DCB

 suy ra : EC=DB 

mà ta lại có : EK=1/2EC

                   DH=1/2DB 

vậy EK=DB: mà theo phần a ta lại có tứ giác DEHK là HBH 

vậy tứ giác DEHK là HCN

Sửa đề: Đường trung tuyến BD

a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)

nên E là trung điểm của AB và D là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB(cmt)

D là trung điểm của AC(cmt)

Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có 

H là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: HK//BC và \(HK=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có 

ED//HK(cmt)

ED=HK(cmt)

Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

22 tháng 2 2021

Sửa đề: Đường trung tuyến BD

a) Ta có: BD và CE lần lượt là các đường trung tuyến ứng với các cạnh AC,AB trong ΔABC(gt)

nên E là trung điểm của AB và D là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB(cmt)

D là trung điểm của AC(cmt)

Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: ED//BC và ED=BC2ED=BC2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có 

H là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: HK//BC và HK=BC2HK=BC2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ED//HK và ED=HKXét tứ giác EDKH có 

ED//HK(cmt)

ED=HK(cmt)

Do đó: EDKH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).a. Chứng minh tứ giác AKMH là hình chữ nhật.b. Chứng minh tứ giác BHKM là hình bình hành.c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm)....
Đọc tiếp

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).

a. Chứng minh tứ giác AKMH là hình chữ nhật.

b. Chứng minh tứ giác BHKM là hình bình hành.

c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.

d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm). Tính độ dài EF.

4. Cho tam giác ABC vuông tại A , đường cao AH . Gọi D là điểm đối xứng với H qua AB,Elà điểm đối xứng với H qua AC . Gọi I là giao điểm của AB và DH, K là giao điểm của AC và EH .

a. Tứ giác AIHK là hình gì? Vì sao?

b. Chứng minh ba điểm D,E,A thẳng hàng.

c. Gọi M là trung điểm của BC. Chứng minh AM vuông góc IK. 

1
11 tháng 12 2021

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

a) Ta có: BM là đường trung tuyến ứng với cạnh AC trong ΔABC(gt)

nên M là trung điểm của AC

Ta có: CN là đường trung tuyến ứng với cạnh AB trong ΔBAC(gt)

nên N là trung điểm của AB

Xét ΔABC có 

M là trung điểm của AC(cmt)

N là trung điểm của AB(cmt)

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên NM//BC và \(NM=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Xét ΔYBC có

E là trung điểm của YB(gt)

F là trung điểm của YC(gt)

Do đó: EF là đường trung bình của ΔYBC(Định nghĩa đường trung bình của tam giác)

nên EF//BC và \(EF=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra NM//EF và NM=EF

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔANC và ΔAMB có 

AN=AM(cmt)

\(\widehat{NAC}\) chung

AC=AB(ΔABC cân tại A)

Do đó: ΔANC=ΔAMB(c-g-c)

nên CN=BM(Hai cạnh tương ứng)

Xét ΔABC có 

BM là đường trung tuyến ứng với cạnh AC(gt)

CN là đường trung tuyến ứng với cạnh AB(gt)

BM cắt CN tại Y(gt)

Do đó: Y là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

\(\Rightarrow BY=\dfrac{BM}{2}\) và \(CY=\dfrac{CN}{2}\)

mà BM=CN(cmt)

nên BY=CY

mà \(EY=\dfrac{YB}{2}\)(E là trung điểm của YB)

và \(FY=\dfrac{YC}{2}\)(F là trung điểm của YC)

nên EY=FY

Ta có: YM+BY=BM(Y nằm giữa B và M)

YN+YC=NC(Y nằm giữa N và C)

mà BM=NC(cmt)

và BY=YC(cmt)

nen YM=YN

Ta có: YM+YE=ME(Y nằm giữa M và E)

YN+YF=NF(Y nằm giữa N và F)

mà YM=YN(cmt)

và YE=YF(cmt)

nên ME=NF

Xét tứ giác NMFE có 

NM//FE(cmt)

NM=FE(cmt)

Do đó: NMFE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành NMFE có NF=EM(cmt)

nên NMFE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: \(EF=\dfrac{BC}{2}\)(cmt)

mà BC=18(gt)

nên \(EF=\dfrac{18}{2}=9\)(đvđd)

Xét ΔAYB có 

N là trung điểm của AB(cmt)

E là trung điểm của BY(cmt)

Do đó: NE là đường trung bình của ΔAYB(Định nghĩa đường trung bình của tam giác)

nên NE//AY và \(NE=\dfrac{AY}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AY=12

nên \(NE=\dfrac{12}{2}=6\left(đvđd\right)\)

Ta có: NMFE là hình chữ nhật(cmt)

nên \(C_{NMFE}=\left(NE+EF\right)\cdot2=\left(6+9\right)\cdot2=30\left(đvcv\right)\)

a: Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

hay BCMN là hình thang

22 tháng 11 2023

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

nên AMCK là hình bình hành

Hình bình hành AMCK có MA=MC

nên AMCK là hình thoi

b: AMCK là hình thoi

=>AK//MC và AK=MC

AK//MC

M\(\in\)BC

Do đó: AK//MB

AK=MC

MC=MB

Do đó: AK=MB

Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

c; Để hình thoi AMCK trở thành hình vuông thì \(\widehat{KCM}=90^0\)

AMCK là hình thoi

=>CA là phân giác của \(\widehat{KCM}\)

=>\(\widehat{ACM}=\dfrac{1}{2}\cdot\widehat{KCM}=45^0\)

=>\(\widehat{ACB}=45^0\)

21 tháng 12 2021

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và ED=BC/2(1)

Xét ΔGBC có

M là trung điểm của BG

N là trung điểm của CG

Do đó: MN là đường trung bình của ΔGBC

Suy ra: MN//BC và MN=BC/2(2)

Từ (1) và (2) suy ra MN//DE và MN=DE

hay MNDE là hình bình hành

2 tháng 9 2021

hắc

2 tháng 9 2021

liên quan???