K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

ΔMDB vuông tại D có DI là trung tuyến

nên DI=MI=BI

ΔMEC vuông tại E có EK là trung tuyến

nên KC=KM=KE

Xét ΔABC có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

=>E là trung điểm của AC

Xét ΔABC có D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình 

=>DE//BC và DE=BC/2

KI=KM+MI

=1/2(MC+MB)

=1/2BC

=DE

Xét tứ giác DIKE có

DE//KI

DE=KI

=>DIKE là hình bình hành

b: DIKE là hình chữ nhật

=>góc DIK=90 độ

=>DI vuông góc MB

Xét ΔDMB có

DI vừa là đường cao, vừa là đường trung tuyến

=>ΔDMB cân tại D

mà ΔDMB vuông cân tại D

nên góc B=45 độ

14 tháng 11 2023

sai câu a DIKE LÀ HBH ??

a) Tứ giác ACDE có: 

AM = CM 

DM = ME 

=> ACDE là hình bình hành 

Mà ADC = 90° 

=> ACDE là hình chữ nhật 

b) Vì ∆ABC cân tại A 

AD là đường cao => AD là trung trực ∆ABC 

=> BD = CD 

∆ABC có AM = CM 

DC = BD 

=> MD là đường trung bình 

=> DM//AC 

=> ABDM là hình thang 

c) Để hình chữ nhật ADCE là hình vuông thì AD = DC

=> ∆ADC vuông cân tại D 

=> DAC = 46° 

=> BAC = 90° 

=> Để ADCE là hình vuông thì ∆ABC vuông tại A 

22 tháng 11 2016

a) ta có góc DMA=MAN=DAN=900

=> tứ giác AMDN là hình chữ nhật

b) ta có DB=DC VÀ DN // MA ( do MDNA là hình chữ nhật )

=> DN là đường trung bình của tam giác ABC

--> AN=NC hay N là trung điểm của AC

c) ta có tứ giác ADCE có 2 đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Hình bình hành ADCE có 2 đường chéo vuông góc với nhau nên là hình thoi

d)

11 tháng 11 2017

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A

24 tháng 12 2018

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A