Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
a: BC=BH+CH=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
b: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
a: BC=BH+CH=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
b: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{ADH}=\widehat{AEH}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>DE=AH=6cm
b: Gọi O là giao của AH và DE
=>O là trung điểm chung của AH và DE
mà AH=DE
nên OA=OH=OD=OE
Ta có: góc OHD+góc MHD=90 độ
góc ODH+góc MDH=90 độ
mà góc OHD=góc ODH
nên góc MHD=góc MDH
=>ΔMHD cân tại M và góc MDB=góc MBD
=>ΔMBD cân tại M
=>MH=MB
=>M là trung điểm của HB
Cm tương tự, ta được N là trung điểm của HC
=>MN=1/2BC
d: \(AD\cdot AB=AH^2\)
\(AE\cdot AC=AH^2\)
Do đó: \(AD\cdot AB=AE\cdot AC\)
a: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
Tâm O là trung điểm của AH
bán kính là AH/2=R
b:
ΔABC vuông tại A có AH là đường cao
nên HA^2=HB*HC
=>HA/HC=HB/HA
HO/HN=HA/HC=HB/HA
Xét ΔBHO vuông tại H và ΔAHN vuông tại H có
HB/HA=HO/HN
=>ΔBHO đồng dạng với ΔAHN
a) +) Vì \(HD\perp AB=\left\{D\right\}\) (vì H là hình chiếu)\(\Rightarrow\)Góc ADH = 90
\(HE\perp AC=\left\{E\right\}\) (vì H là hình chiếu) ==> Góc AEH = 90
+) Xét tg ADHE có: Góc ADH=AEH=90 (cmt); DAE=90(vì tam giác ABC vuông ở A) ==> tg ADHE là hcn(dhnb)
b) +) Theo HTL trong tam giác vuông ta có \(AH^2=BH.HC\Leftrightarrow AH=\sqrt{4.9}=6cm\)
mà tg ADHE là hcn(cma)==> AH=DE=6cm (t/c hcn)
c) Ta có tam giac ADC đồng dạng vs tam giác ABE(g-g) \(\Rightarrow\frac{AD}{AE}=\frac{AC}{AB}\Leftrightarrow AD.AB=AE.AC\left(dpcm\right)\)
Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.
a)Chứng minh tứ giác ADHE là hình chữ nhật
b)tính DE=?cm
c)Chứng minh AD.AB=AC.AE
Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.
a)Chứng minh tứ giác ADHE là hình chữ nhật
b)tính DE=?cm
c)Chứng minh AD.AB=AC.AE
Cho tam giác ABC vuông tại A. Đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Biết BH=4cm,HC=9cm.
a)Chứng minh tứ giác ADHE là hình chữ nhật
b)tính DE=?cm
c)Chứng minh AD.AB=AC.AE
bái này khó lắm
nếu làm đc cx rất dài
Vậy nha
a hi hi
cc
a ha ha