Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Xét tg vuông ABH có
\(AH^2=AE.AB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AF.AC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AE.AB=AF.AC\) (cùng bằng \(AH^2\) )
2/
\(HE\perp AB\) (gt)
\(AC\perp AB\) (gt) \(\Rightarrow AF\perp AB\)
=> AF//HE (cùng vuông góc với AB) (1)
Ta có
\(HF\perp AC\) (gt)
\(AB\perp AC\) (gt) \(\Rightarrow AE\perp AC\)
=> AE//HF (cùng vuông góc với AC) (2)
Từ (1) và (2) => AEHF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hình bình hành )
=> AE = HF
Xét tg vuông AHC có
\(HF^2=AF.FC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AE^2=AF.FC\)
3/
E; F cùng nhìn AH dưới góc \(90^o\)
=> AEHF là tứ giác nội tiếp
\(\Rightarrow\widehat{BAH}=\widehat{EFH}\) (góc nội tiếp cùng chắn cung EH) (1)
\(\widehat{AEF}=\widehat{EFH}\) (góc so le trong) (2)
\(\widehat{AEF}=\widehat{IEB}\) (góc đối đỉnh) (3)
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) (4)
Xét tg IBE và tg IFC có
Từ (1) (2) (3) (4) \(\Rightarrow\widehat{IEB}=\widehat{ACB}\)
\(\widehat{EIB}\) chung
=> tg IBE đồng dạng với tg IFC (g.g.g)
\(\Rightarrow\dfrac{IE}{IC}=\dfrac{IB}{IF}\Rightarrow IE.IF=IB.IC\)
4/
Ta có
\(\widehat{BAK}+\widehat{BAM}=\widehat{MAK}=90^o\)
\(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{BAK}=\widehat{CAM}\)
Mà \(AM=\dfrac{BC}{2}=MB=MC\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg AMC cân tại M \(\Rightarrow\widehat{CAM}=\widehat{ACM}\)
\(\Rightarrow\widehat{ACM}=\widehat{BAK}\)
Xét tg ABK và tg ACK có
\(\widehat{AKC}\) chung
\(\widehat{BAK}=\widehat{ACM}\) (cmt)
=> tg ABK đồng dạng với tg ACK (g.g.g)
\(\Rightarrow\dfrac{KB}{AK}=\dfrac{AK}{KC}\Rightarrow AK^2=KB.KC\)
Xét tg vuông AKM có
\(AK^2=KH.KM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow KH.KM=KB.KC\)
a: Xét ΔAHC có
E là trung điểm của AC
EF//AH
Do đó: F là trung điểm của CH
Xét ΔAHC có
E là trung điểm của AC
F là trung điểm của CH
Do đó: EF là đường trung bình của ΔAHC
Suy ra: \(EF=\dfrac{AH}{2}\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền CB
nên \(AH^2=HB\cdot HC\)
hay \(AH=\sqrt{HB\cdot HC}\left(2\right)\)
Từ (1) và (2) suy ra \(EF=\dfrac{\sqrt{HB\cdot HC}}{2}\)
hay \(EF^2=\dfrac{HB\cdot HC}{4}\)
Cho tam giác ABC vuông tại A, AD là đường cao, E là trung điểm DC. Đường thẳng E vuông góc với BC cắt AC tại F. CMR: 1/EF^2 - 1/AF^2=4/EB^2-EC^2
a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)
\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)
b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp
\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)
\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)
\(=AH^2.AC=AF.AC.AC=AF.AC^2\)
c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)
\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)
\(\Rightarrow AH^3=BC.BE.CF\)
Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)
Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)
\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)
Qua A kẻ đường thẳng vuông góc với EF tại M, cắt BC tại N.Gọi I là giao của AH và EF.
CMR: góc IAE = góc IEA.
Có tam giác MAE vuông tại M => góc MAE + góc MEA= 90 độ Hay góc NAB + góc IEA = 90 độ
Có tam giác ABH vuông tại H => góc ABH + góc HAE= 90 độ Hay góc NBA + góc IAE = 90 độ
=> góc NAB= góc NBA (phụ với hai góc bằng nhau)
=> tam giác NAB cân tại N
=> NA=NB
CM: NA=NC
=> NB=NC
=> N là trung điểm của BC
=> N trùng với I, M trùng với K.
mà AM vuông góc với EF
=> AK vuông góc với EF
Xét tam giác AEF vuông tại A có AK là đường cao
=> 1/AK2 = 1/AE2 + 1/AF2
Cm AE=HF, EH=AF
=> đpcm