Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADB\)và \(\Delta AEB\)có:
AD = AE (gt)
\(\widehat{BAD}=\widehat{BAE}\)(= 90o)
Cạnh AB chung
=> \(\Delta ADB\)= \(\Delta AEB\)(c. g. c)
=> DB = EB (hai cạnh tương ứng) (đpcm)
b/ \(\Delta DBC\)có: DI vừa là đường cao vừa là đường trung tuyến
=> \(\Delta DBC\)cân tại A
Ta có \(\widehat{BDE}=\widehat{DBC}+\widehat{DCB}\)
Mà DB = EB (cm câu a)
nên \(\Delta BED\)cân tại A
=> \(\widehat{BDE}=\widehat{BED}\)
và \(\widehat{DBC}=\widehat{DCB}\)(\(\Delta DBC\)cân tại A)
=> \(\widehat{BED}=2\widehat{DCB}\)(đpcm)
a) Xét tam giác ABR và tam giác ABD có :
AE=AD ( gt )
AB chung
=> Tam giác ABE =Tam giác ABD ( 2 cạnh góc vuông )
=> BD = BE ( đpcm )
b) Ta có : DI là t2 BC
=> DB = DC => góc DBC = góc DCB
=> góc BDE = góc DBC + góc DCB = 2. góc DCB
Mà góc BDE = góc BEC ( sao cho BDE cân )
=> góc BEC = 2. góc ECB
c) Ta có : góc AIB = góc IAC + góc ICA
mà I là trung điểm BC
=> IA = IB = IC => tam giác IAC cân tại I
=> góc C1 = góc A1 => góc AIB =2. góc C1
=> góc AIB = góc AEC
=> tam giác EIB \(\infty\)tam giác CEB ( góc B chung ; góc E = góc I )
=> góc BFI = góc BCE hay góc A1 = góc BFI
mà góc A1 =góc A2 => góc BFI = góc A2
=> tam giác EFA cân tại E
=> tam giác AEF cân ( đpcm )
Bài 1 : Bài giải
Bài 2 : Bài giải
Bài 3 : Bài giải
Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có :
\(BA=BE\) ( gt )
\(BD\) : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )
\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
....
Tự làm tiếp nha ! Mình bận rồi !
đề thiếu vẽ đường trung trực của BC cắt AC tại D, bài này khó nên tớ rút gọn vài chổ
Vẽ BD là phân giác của \(\widehat{ABC}\)
a) Ta có thể dễ dàng chứng minh được \(\Delta BAD=\Delta BID\) theo trường hợp cạnh huyền góc nhọn
\(\Rightarrow AD=ID\left(3\right);AB=BI\left(1\right)\) ( hai cạnh tương ứng )
Ta có \(\widehat{ADB}+\widehat{BDI}+\widehat{IDC}=180^o\left(kb\right)\)
mà \(\widehat{ADB}=\widehat{BDI}\left(\Delta BAD=\Delta BID\right)\)
\(\Leftrightarrow\widehat{ADB}=60^o;\widehat{BDI}=60^o;\widehat{IDC}=60^o\)
Ta có thế dễ dàng chứng minh được
\(\Delta BID=\Delta CID\left(g-c-g\right)\)( \(\widehat{BDI}=\widehat{IDC}=60^o\); ID LÀ CẠNH CHUNG; \(\widehat{BID}=\widehat{CID}=90^o\))
\(\Rightarrow BI=IC\left(2\right)\)
TỪ (1) và (2)
\(\Rightarrow AB=IC\)
Có AE = AD (4)
TỪ (3) VÀ (4)
\(\Rightarrow AE=ID\)
xét \(\Delta BAE\)và\(\Delta CID\)có
\(AB=CI\left(cmt\right);\widehat{EAB}=\widehat{DIC}=90^o;AE=ID\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CID\left(c-g-c\right)\)
\(\Rightarrow BE=CD\left(đpcm\right)\)
b,c mình làm sau
a/
Xét \(\Delta BDE\) có
\(BA\perp DE\) => BA là đường cao của \(\Delta BDE\)
\(AE=AD\) => BA là đường trung tuyến của \(\Delta BDE\)
\(\Rightarrow\Delta BDE\) cân tại B (trong tg có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) => BD=BE (cạnh bên của tg cân)
b/
Xét \(\Delta BCD\) có
\(DI\perp BC\) => DI là đường cao của \(\Delta BCD\)
IB=IC => DI là đường trung tuyến của \(\Delta BCD\)
=> \(\Delta BCD\) cân tại D (trong tg có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) \(\Rightarrow\widehat{DBC}=\widehat{ECB}\) (2 góc ở đáy tg cân)
Ta có \(\widehat{BDE}=\widehat{DBC}+\widehat{BCE}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó) \(\Rightarrow\widehat{BDE}=2\widehat{BCE}\)
Mà \(\Delta BDE\) cân tại B (cmt)\(\Rightarrow\widehat{BEC}=\widehat{BDE}=2\widehat{BCE}\)
c/
Ta có \(\widehat{BEC}=\widehat{BDE}=2\widehat{ECB}\) (cmt) (1)
Xét tg vuông ABC có AI là trung tuyến thuộc cạnh huyền BC
\(\Rightarrow AI=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
Mà \(IB=IC=\dfrac{BC}{2}\)
\(\Rightarrow AI=IC=IB\Rightarrow\Delta IAC\) cân tại I \(\Rightarrow\widehat{ECB}=\widehat{IAC}\) (góc ở đáy tg cân) (2)
Ta có \(\widehat{IAC}=\widehat{FAE}\) (góc đối đỉnh) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{BEC}=2\widehat{FAE}\) (4)
Xét \(\Delta AEF\) có \(\widehat{BEC}=\widehat{EFA}+\widehat{FAE}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó) (5)
Từ (4) và (5) \(\Rightarrow\widehat{FAE}=\widehat{EFA}\Rightarrow\Delta AEF\) cân tại E
d/
Ta có
\(\Delta BDE\) cân tại B (cmt) => BE=BD
\(\Delta BCD\) cân tại D (cmt) => BD=CD
=> BE=CD (1)
Ta có
AD=AE (gt)
\(\Delta AEF\) cân tại E (cmt) => AE=EF
=> EF=AD (2)
Từ (1) và (2) => BE+EF=CD+AD => BF=AC