Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔAHB nội tiếp
AB là đường kính
Do đó: ΔAHB vuông tại H
hay AH⊥BC
b: Sửa đề: M là trung điểm của AC
Ta có: ΔAHC vuông tại H
mà HM là đường trung tuyến
nên HM=AM=AC/2
Xét ΔMAO và ΔMHO có
MA=MH
MO chung
OA=OH
Do đó: ΔMAO=ΔMHO
Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)
hay HM là tiếp tuyến của (O)
Lời giải:
a. Ta thấy $\widehat{AHC}=90^0$ (góc nt chắn nửa đường tròn $(O)$ - chắn đường kính AC)
$\Rightarrow AH\perp HC$ hay $AH\perp BC$ (đpcm)
b. Do tam giác $BHA$ vuông tại $H$ nên đường trung tuyến $HM$ bằng nửa cạnh huyền $BA$
$\Rightarrow HM=MA$
$\Rightarrow \widehat{MHA}=\widehat{MAH}=\widehat{BAH}=90^0-\widehat{HAC}=\widehat{HCA}$
$\Rightarrow HM$ là tiếp tuyến $(O)$.
c.
Dễ thấy $\widehat{ADC}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow DA\perp DC$
$\Rightarrow \frac{DA}{DC}=\cot \widehat{DAC}=\cot A_1(*)$
$\frac{DC}{DE}=\cot \widehat{DCE}=\cot C_1$
Mà $\widehat{C_1}=90^0-\widehat{E_1}=90^0-\widehat{E_2}=\widehat{A_2}=\widehat{A_1}$
$\Rightarrow \frac{DC}{DE}=\cot C_1=\cot A_1(**)$
Từ $(*); (**)\Rightarrow \frac{DA}{DC}=\frac{DC}{DE}\Rightarrow DA.DE=DC^2$
a) Xét (O) có \(\widehat{ANC}\) nội tiếp chắn nửa đường tròn⇒\(\widehat{AHC}=90^0\)⇒AH⊥BC
b) Ta có:
\(\widehat{OHM}\)=\(\widehat{OHA}\)+\(\widehat{AHM}\)=\(\widehat{OAH}\)+\(MAH\)\(=90^0\)\(\Rightarrow\)HM là tiếp tuyến của (O)
c) Xét △DEC và △DCA có:
\(\widehat{D}\) chung
\(\widehat{DCE}=\widehat{DAH}=\widehat{DAC}\)
Suy ra △DEC ∼ △DCA (g-g)
⇒\(\dfrac{DC}{DA}=\dfrac{DE}{DC}\Rightarrow DA.DE=DC.DC\)
d) công thức
S=p.r
Dễ dàng tính đc SAMH=\(\dfrac{1}{2}S_{ABH}\)
Dễ dàng tính đc các cạnh AM;MH;AH\(\Rightarrow p=?\Rightarrow r=?\)
@Trần Trung Nguyên Giúp mình với ạ mai mình phải nạp đề cương roi :vvv