K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

xét tam giác KHI có HD là phân giác trong, ta được : DI/DK=IH/KH (1)                  

Cũng tam giác KHI có HE là phân giác ngoài do đó: EI/EK=IH/HK(2)                            

1 và 2 suy ra DI/DK=EI/EK                                

suy ra điều phải chứng minh thôi bạn 

30 tháng 7 2018

a, \(\Delta ABC\)và \(\Delta HBA\)có:

\(\widehat{ABC}=\widehat{AHB}=90^o\)

\(\widehat{BAC}\) chung

\(\Rightarrow \Delta ABC \sim \Delta HBA\) (g-g) 

b, Ta có: \(\Delta ABC \sim \Delta HBA\) (g-g) \(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)\(\Rightarrow AB.AC=AH.BC\)

c, \(\Delta ABC\)có: \(\widehat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

hay \(10^2=6^2+AC^2\)

       \(AC^2=64\)

       \(AC=8\left(cm\right)\)

Ta có: \(\frac{AC}{AH}=\frac{BC}{AB}\left(cmt\right)\Leftrightarrow\frac{8}{AH}=\frac{10}{6}\Leftrightarrow AH=4,8\left(cm\right)\)

\(\Delta AHC\)có: \(\widehat{AHC}=90^o\)

\(\Rightarrow AC^2=AH^2+HC^2\)(định lý Py-ta-go)

hay \(8^2=4,8^2+HC^2\)

       \(HC^2=40,96\)

       \(HC=6,4\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc ABC chung

Do đo: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{AH\cdot BC}{2}\)

=>\(AB\cdot AC=AH\cdot BC\)

c: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

\(CH=\dfrac{AC^2}{BC}=6.4\left(cm\right)\)

24 tháng 4 2018

dễ quá mai mình làm cho

giờ ngủ đây

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

nên \(AH\cdot BC=AB\cdot AC\)

c: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

\(CH=\dfrac{AC^2}{BC}=6.4\left(cm\right)\)

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

19 tháng 9 2019
bạn ơi đề sai ak
19 tháng 9 2019

Mk sửa rồi đấy