K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

vào link này bạn nhé

https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A,+g%E1%BB%8Di+I+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%C3%A1c+%C4%91%C6%B0%E1%BB%9Dng+ph%C3%A2n+gi%C3%A1c+trongc%E1%BB%A7a+tam+gi%C3%A1c.+Bi%E1%BA%BFt+AB+=+5cm,+IC+=+6cm.+T%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+c%E1%BA%A1nh+BC.&id=758334

a: BC=10cm

b: Xét ΔBAI vuông tại A và ΔBKI vuông tại K có

BI chung

\(\widehat{ABI}=\widehat{KBI}\)

Do đó: ΔBAI=ΔBKI

Suy ra: BA=BK

hay ΔBAK cân tại B

c: ta có: ΔBAI=ΔBKI

nên IA=IK

mà IK<IC

nên IA<IC

30 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ Ta có \(\Delta ABC\)vuông tại A

=> BC2 = AB2 + AC2 (định lý Pitago)

=> BC2 = 62 + 82

=> BC2 = 36 + 64

=> BC2 = 100

=> \(BC=\sqrt{100}=10\)(cm)

b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là tia phân giác của \(\widehat{ABC}\))

Cạnh BI chung

=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)

c/ Ta có \(\Delta ABI\)\(\Delta HBI\)(cmt) => \(\hept{\begin{cases}BA=BH\\IA=IH\end{cases}}\)(hai cặp cạnh tương ứng)

=> BI cách đều hai đầu đoạn thẳng AH

=> BI là đường trung trực của AH (đpcm)

d/ \(\Delta IHC\)vuông tại H có: IH < IC (quan hệ giữa đường vuông góc và đường xiên)

và IA = IH (cm câu c)

=> IA < IC (đpcm)

e/ Mình xin chỉnh lại đề: CMR: I là trực tâm \(\Delta KBC\)

\(\Delta AIK\)và \(\Delta HIC\)có: \(\widehat{IAK}=\widehat{IHC}=90^o\)(vì AC \(\perp\)BK, KH \(\perp\)BC)

IA = IH (cm câu c)

\(\widehat{AIK}=\widehat{HIC}\)(đối đỉnh)

=> \(\Delta AIK\)\(\Delta HIC\)(g. c. g) => AK = HC (hai cạnh tương ứng)

và AB = BH (cm câu c)

=> AK + AB = HC + BH

=> BK = BC

nên \(\Delta BKC\)cân tại B

=> Đường phân giác BI cũng là đường cao của \(\Delta BKC\)

=> BI \(\perp\)KC

Ta có: BI cắt KH tại I

Chứng minh:

Giả sử BI không cắt KH

=> BI // KH

Mà BI \(\perp\)KC (cmt)

=> KH \(\perp\)KC

và KH \(\perp\)BC (gt)

=> KC // BC

=> K, B, C thẳng hàng

Vô lý! (Vì K, B, C là ba đỉnh của một tam giác)

=> BI cắt KH tại I

=> I là trực tâm của \(\Delta KBC\)(đpcm)

30 tháng 4 2018

Bài này lớp 7 nên mik ko biết làm.

Nhưng bạn thử zô Câu hỏi tương tự ik

Nhỡ đâu có .

Hok tốt nha Hoa

8 tháng 2 2020
GTCho △ABC vuông tại A có AB = 9cm; BC = 15 cm
KL

a) Tính AC                                                                                                              b) H ∈ BC sao cho BA = BH; HI _|_ BC (I ∈ AC). CM : △ABI = △HBI                      c) HI ∩ BA = {F} . CM : IF = IC                                                                                  d) CM : IF > HI

9cm 15cm A B C H I F

a) Áp dụng định lí Pythagoras vào △ABC, ta có :

BC2 = AB2 + AC2

\(\Rightarrow\)152 = 92 + AC2

\(\Rightarrow\)AC2 = 144

\(\Rightarrow\)AC   = 12 

Vậy độ dài cạnh AC là 12 cm

b) Xét △ABI và △HBI có :

     IB chung

     BA = BH (gt)

\(\Rightarrow\) △ABI = △HBI (cạnh huyền-góc nhọn)

[ĐPCM]

c) Ta có : △ABI = △HBI

\(\Rightarrow\)IA = IH (cặp cạnh tương ứng)

Xét △AIF và △HIC có :

     IA = IH (Chứng minh trên)

     ^AIF = ^HIC (Đối đỉnh)

\(\Rightarrow\)△AIF = △HIC (Cạnh góc vuông-Góc nhọn kề) 

\(\Rightarrow\)IF = IC (Cặp cạnh tương ứng)

[ĐPCM]

d) Xét △IBC có H ∈ BC

\(\Rightarrow\)IC > HI

\(\Rightarrow\)IF > HI (Vì IF = IC)

[ĐPCM]

8 tháng 2 2020

Mi làm được cái bài mà cái GT-KL nó phả hỏng hết :D

ÔI ! Nghiệp đang quanh quẩn bên bạn của mình XD

6 tháng 5 2022

tan kiu