Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) chung
suy ra: \(\Delta ABH~\Delta CBA\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(BC^2=15^2+20^2=625\)
\(\Rightarrow\)\(BC=\sqrt{625}=25\)
\(\Delta ABH~\Delta CBA\)\(\Rightarrow\)\(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{BH}{15}=\frac{15}{20}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{3}{4}\)\(\Rightarrow\)\(AH=15\)
\(\frac{BH}{15}=\frac{3}{4}\)\(\Rightarrow\)\(BH=11,25\)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12(cm)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2=AM*AB
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
xét \(\Delta ABC\)và \(\Delta HBA\)có :
\(\widehat{BAH}=\widehat{AHB}\)
\(\widehat{ABH}\)chung
\(\Rightarrow\Delta ABCdongdang\Delta HBA\)
hình bạn tự vẽ
a) Xét ΔHBA và ΔABC có :
^H = ^A = 900
^B chung
=> ΔHBA ~ ΔABC (g.g)
b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :
AB2 = BH2 + AH2
=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm
Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC
=> BC = AB2/HB = 152/9 = 25cm
Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm
=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2
c) mình chưa nghĩ ra :v
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
a) Xét tam giác HBA và tam giác ABC :
góc B chung
góc BHA = góc BAC (= 90 độ)
=> Tam giác HBA đồng dạng với tam giác ABC
b) Áp dụng định lí pytago vào tam giác vuông ABC, ta được :
AB^2 + AC^2 = BC^2
=> 15^2 + 20^2 = BC^2
=> BC^2 = 625
=> BC = 25 (cm)
Vì tam giác HBA đồng dạng với tam giác ABC
=> AH/AC = AB/BC
=> AH/20 = 15/25
=> AH = 20.15/25 = 12 (cm)
No one but you draw the figure.
a) Consider the right triangle ABC, which has \(\widehat{A}=90^o\), we have \(\widehat{B}+\widehat{C}=90^o\Leftrightarrow\widehat{C}=90^o-\widehat{B}\) (1)
On the other hand, the triangle ABC has the height AH, therefore, triangle HBA is also a right triangle \(\left(\widehat{AHB}=90^o\right)\)
Thus, we have \(\widehat{BAH}+\widehat{B}=90^o\Leftrightarrow\widehat{BAH}=90^o-\widehat{B}\) (2)
From (1) and (2), we get \(\widehat{HAB}=\widehat{C}\)
Consider the 2 triangles HAB and ABC, both of these triangles are right triangles, also, \(\widehat{HAB}=\widehat{C}\). Therefore, \(\Delta HAB~\Delta ABC\left(a.a\right)\)
b) Consider the right triangle ABC \(\left(\widehat{A}=90^o\right)\). According to the Pytagorean theorem, we have \(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
Because \(AB=15cm;AC=20cm\), \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
Triangle ABC rights at A, so \(S_{ABC}=\dfrac{1}{2}AB.AC\) (3)
Also, triangle ABC has the height AH, so \(S_{ABC}=\dfrac{1}{2}AH.BC\)(4)
From (3) and (4), we have \(\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\left(=S_{ABC}\right)\Leftrightarrow AH.BC=AB.AC\)\(\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.20}{25}=12\left(cm\right)\)
So, \(BC=25cm\) and \(AH=12cm\)
c) What is the question? I can't see it.