Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+) Ta có: \(\widehat{DAB}=\widehat{EAC}=90^o\)=> \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\Leftrightarrow\widehat{DAC}=\widehat{EAB}\)
Xét tam giác DAC và tam giác BAE có:
AD = AB ( vì tam giác BAD vuông cân tại A )
\(\widehat{DAC}=\widehat{EAB}\) (chứng minh trên)
AE = AC ( vì tam giác CAE vuông cân tại A )
=> \(\Delta DAC=\Delta BAE\left(c.g.c\right)\)=> DC = BE (2 cạnh tương ứng)
+) Đặt H là giao điểm của DC và BE, G là giao điểm của AC và BE
Góc AGE và góc HGC đối đỉnh nên \(\widehat{AGE}=\widehat{HGC}\) (1)
\(\Delta DAC=\Delta BAE\Rightarrow\widehat{AEB}=\widehat{ACD}\) ( 2 góc tương ứng ) (2)
Tam giác AEG có: \(\widehat{AEG}+\widehat{EGA}+\widehat{GAE}=180^o\) (tổng 3 góc trong tam giác)
Tam giác HGC có: \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^o\) (tổng 3 góc trong tam giác)
=>\(\widehat{AEG}+\widehat{GAE}+\widehat{GAE}=\)\(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)
Kết hợp với (1) và (2) => \(\widehat{GAE}=\widehat{GHC}=90^o\Leftrightarrow DC⊥BE\)
Dễ nhưng dài nên lười đánh máy quá:")
a) Ta có: \(\widehat{BAH}+\widehat{ABH}=90^o\)
Mà \(\widehat{DAI}+\widehat{DAB}+\widehat{BAH}=180^O\)
\(\Leftrightarrow\widehat{DAI}+90^o+\widehat{BAH}=180^O\)
\(\Leftrightarrow\widehat{DAI}+\widehat{BAH}=90^o\)
=> \(\widehat{DAI}=\widehat{ABH}\)( cùng phụ BAH)
Xét ∆ABH và ∆DAI:
AB=AD(∆ABD vuông cân tại A)
\(\widehat{AHB}=\widehat{DIA}=90^o\)
\(\widehat{ABH}=\widehat{DAI}\left(cmt\right)\)
=>∆ABH=∆DAI (ch.gn)
b) Theo câu a: ∆ABH=∆DAI
=> AH=DI (2 cạnh t/ứ)(1)
Cmtt câu a ta được ∆AKE=∆CHA
=> EK=AH (2 canh t/ứ) (2)
Từ (1) và (2) suy ra DI=EK
c) Gọi giao điểm của DE và HA là F
Xét ∆FID và ∆FKE:DI=K (cm ở câu b)
\(\widehat{FID}=\widehat{FKE}=90^o\)
\(\widehat{IFD}=\widehat{KFE}\) (2 góc đối đỉnh)
=> ∆FID=∆FKE (cgv.gn)
=> DF=EF (2 canh t/ứ)
=> F là trung điểm của DE
=> AH cắt DE tại trung điểm của DE
vừa vuông cân vừa đều là sao
\(\Delta BAD\) đều
\(\Delta CAE\) vuông cân tại A nhé bạn!