K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12(cm)

c: ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2=AM*AB

17 tháng 10 2023

A B M N C H D E

a/

\(HM\perp AB;AC\perp AB\Rightarrow AN\perp AB\) => HM//AN

\(HN\perp AC;AB\perp AC\Rightarrow AM\perp AC\) => HN//AM

=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\) (gt)

=> AMHN là HCN (hình bình hành có 1 góc trong bằng 90o là HCN)

b/ Nối A với D và A với E

Xét tg vuông AMD và tg vuông AMH có

MD=MH; AM chung => tg AMD = tg AMH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{MAD}=\widehat{MAH}\)

Tương tự khi xét tg vuông ANH và tg vuông ANE

=> tg ANH = tg ANE \(\Rightarrow\widehat{NAH}=\widehat{NAE}\)

\(\Rightarrow\widehat{MAD}+\widehat{NAE}=\widehat{MAH}+\widehat{NAH}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{MAD}+\widehat{NAE}+\widehat{A}=\widehat{DAE}=90^o+90^o=180^o\)

=> D; A; E thẳng hàng

c/

Xét tg vuông MBD và tg vuông MBH có

MD=MH (gt)

MB chung

=> tg MBD = tg MBH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau) => BD=BH

Xét tg ADB và tg AHB có

tg AMD = tg AMH (cmt) => AD=AH

AB chung

BD=BH (cmt)

=> tg ADB = tg AHB \(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^o\Rightarrow BD\perp DE\)

C/m tương tự ta cũng có \(CE\perp DE\)

=> BD//CE (cùng vuông góc với DE)

=> BDEC là hình thang

d/

Ta có 

tg AMD = tg AMH (cmt) => AD=AH

c/m tương tự có

tg AHN = tg ANE => AE=AH

=> AD=AE

Xét tg vuông DHE có

AD=AE (cmt)

\(AH=AD=AE=\dfrac{DE}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

MD=MH; NE=NH => MN là đường trung bình của tg DHE

\(\Rightarrow MN=\dfrac{DE}{2}\)

\(\Rightarrow MN+AH=\dfrac{DE}{2}+\dfrac{DE}{2}=DE\)

 

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021
29 tháng 12 2021

a: Xét ΔAHC có

O là trung điểm của AH

F là trung điểm của AC

Do đó: OF là đường trung bình

=>HC=2OF