Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ △ABC vuông cân tại A \(\Rightarrow\hat{ABC}=\hat{ACB}=45\text{°}\)
△BDC có \(\hat{CBD}=90\text{°};BC=BD\)
⇒ △BDC vuông cân tại B \(\Rightarrow\hat{BDC}=\hat{BCD}=45\text{°}\)
Mà: \(\hat{ACD}=\hat{ACB}+\hat{BCD}=45\text{°}+45\text{°}=90\text{°}\)
Tứ giác ABCD có:
\(\begin{matrix}AB\perp AC\\CD\perp AC\end{matrix}\Rightarrow AB\text{//}CD;\hat{BAC}=90\text{°}\)
Vậy: ABCD là hình thang vuông
===========
b/ Áp dụng đ/l Pytago cho △ABC \(\Rightarrow BC=\sqrt{5^2+5^2}=\sqrt{50}\left(cm\right)\) \(\left(AB=AC\right)\)
- Do \(BC=BD\)
Áp dụng đ/l Pytago cho △BCD \(\Rightarrow CD=\sqrt{\sqrt{50}^2+\sqrt{50}^2}=10\left(cm\right)\)
Vậy: \(CD=10cm\)
a, Xét t/g ABC vuông tại A có: góc ABC = 45 độ
Xét t/g BCD vuông tại B có góc BCD = 45 độ
Do đó góc ABC = góc BCD = 45 độ
Mà 2 góc này ở vị trí so le trong
=> AB//CD
=> tứ giác ABCD là hình thang
Mà góc A = 90 độ
=> ABCD là hình thang vuông
b, Ta có: AB = 5cm => AC=5cm
ÁP dụng đinh lí pytago vào t/g ABC vuông tại A ta có:
BC2=AC2+AB2
=>BC2=52+52=50
=>BC=\(\sqrt{50}\) (cm)
Mà BD=BC => \(BD=BC=\sqrt{50}\left(cm\right)\)
Áp dụng định lý pytago vào t/g BCD vuông tại B ta có:
CD2=BC2+BD2
=>CD2=\(\left(\sqrt{50}\right)^2+\left(\sqrt{50}\right)^2=100\)
=>CD=10 (cm)
P/s: hình ảnh chỉ mang tính chất minh họa
a) ( ABC vuông cân tại A (gt) ( ( ACB = 450
( BCD vuông cân tại B ( ( BCD = 450
( ( ACD = ( ACB + ( BCD = 900
Ta có AB ( AC; CD ( AC ( AB // AC ( ABCD là hình thang vuông.
b) ( ABC vuông ở A, theo định lý Pi Ta Go ta có
BC2 = AB2 + AC2 = 52 + 52 = 50
Trong ( vuông BCD ta lại có:
CD2 = BC2 + BD2 = 50 + 50 = 100 ( CD = 10 cm
Vì ∆ABC vuông cân tại A
=> ABC = ACB = 45°
Xét ∆DBC ta có :
BC = BD
DBC = 90° (gt)
=> ∆BDC vuông cân tại B
=> BDC = BCD = 45°
=> DCB = CBA = 45°
Mà 2 góc này nằm ở vị trí so le trong
=> DC//AB=> BACD là hình thang
Mà BAC = 90° (gt)
=> BACD là hình thang vuông
b) Vì ∆ABC vuông cân tại A
=> AB = AC = 5cm
Áp dụng định lý Py ta go vào ∆ABC ta có :
BC = 5\(\sqrt{2}\)