Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi J là điểm thuộc AB sao cho BJ = AB/6
Ta có AM = AB/3 nên AM = 2BJ
Lại có BN = AB/2 mà AB = AC nên AC = 2BN
Vậy thì ta có ngay \(\Delta NBJ\sim\Delta CAM\left(c-g-c\right)\)
\(\Rightarrow\widehat{BNJ}=\widehat{ACM}\)
Lại có NB // AC nên NJ // EM
Xét tam giác ANJ có NJ // EM, áp dụng đinh lý Pitago ta có:
\(\frac{EA}{NE}=\frac{MA}{MJ}=\frac{2}{3}\)
Mà BN // FC (Cùng vuông góc AB) nên áp dụng định lý Ta let ta cũng có:
\(\frac{AF}{BN}=\frac{EA}{NE}=\frac{2}{3}\)
Mà \(\frac{AM}{BN}=\frac{2}{3}\Rightarrow AM=AF\)
b) Đặt BJ = a
Khi đó ta có \(AF=AM=2a;AC=6a;\)
\(NJ=\sqrt{9a^2+a^2}=a\sqrt{10}\Rightarrow EM=\frac{2a\sqrt{10}}{5}\)
\(BF=\sqrt{4a^2+36a^2}=2a\sqrt{10}\Rightarrow EF=\frac{4a\sqrt{10}}{3}\)
Ta thấy rằng \(EF^2+EC^2=64a^2=FC^2\) nên tam giác EFC vuông tại E.
Theo tính chất trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có :
FH = EH = HC
Vậy nên EH = FH = FC/2 = 8a/2 = 4a = BM.
Câu hỏi của pham trung thanh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Kẻ đường thẳng qua C vuông góc AC cắt AD tại E
ta có ABCE=BDCD=2ABCE=BDCD=2 (1)
mà AB =AC =2 .AM (2)
từ (1, 2) =>AMCE=1AMCE=1 =>AM =CE
=>△BAM=△ACE△BAM=△ACE (c, g, c)
=>ABMˆ=CAEˆABM^=CAE^
mà ABMˆ+AMBˆ=90∘ABM^+AMB^=90∘
=>CAEˆ+AMBˆ=90∘CAE^+AMB^=90∘
=>BM vuông góc AD(đpcm)
Kẻ DE // BM \(\rightarrow\frac{IM}{DE}=\frac{3}{5},BM=3DE\rightarrow MB=5MI\)
\(AB=a\rightarrow AM=\frac{a}{2},BM^2=\frac{5a^2}{4}\rightarrow MI.MB=\frac{Mb^2}{5}=\frac{a^2}{4}\)
\(AM^2=\frac{a^2}{4}\rightarrow MA^2=MI.MB=\frac{MB^2}{5}=\frac{a^2}{4}\)
chiu nhe ban