K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

Tham Khảo nhoa

https://lazi.vn/edu/exercise/cho-tam-giac-abc-vuong-can-tai-a-goi-m-la-trung-diem-cua-bc-d-la-diem-thuoc-doan-bm-d-khac-b-va-m

a, BH = AK:

Ta có: ΔABC vuông cân tại A.

=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)

Cũng có: BH ⊥ AE.

=> ΔBAH vuông tại H.

=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)

Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.

Xét ΔBAH và ΔACK có:

+ AB = AC (ΔABC cân)

+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)

+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)

=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)

=> BH = AK (2 cạnh tương ứng)

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

+ HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.

 chúc bạn học tốt

 

4 tháng 1 2022

a. Xét tam giác BAH và tam giác CAK

BHA= CKA=90*

BA=AC (gt)

BAH=CAK ( cùng phụ với HAC)

=> tam giác BAH=tam giác CAK( ch-gn)

=> BH=AK (2 cạnh tương ứng)

b. Gọi I là giao điểm của AM và KC

Vì BH vg AH; Ck vg AH => BH// CK

=> HBM=KCM (so le trong )

Do tam giác IMC vuông tại M => MIC+MCI= 90*

Lại có tam giác AKI vuông tại K nên KAI+KIA=90*

Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH

Xét tam giác BHM và tam giác AKM

BH= AK ( theo câu a)

HBM= AKM( c/m trên)

BM = AM ( AM là trung tuyến tam giác vuông)

=> tam giác BHM= tam giác AKM(cgc)

c. Theo câu b, 

tam giác BHM= tam giác AKM(cgc)

=> HM= KM(2 cạnh tương ứng)

Ta có BMK+KMA=BMA=90*

Mà HMB= KMA=> BMK+HMB=90*=HMK

Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M

4 tháng 1 2022

hình như bạn có 1 sự nhầm lẫn :))

 

b: Ta có: ΔABC cân tại A

mà AE là đường trung tuyến

nên AE là đường cao

a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

CB chung

\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b) Ta có: ΔBHC=ΔCKB(cmt)

nên HC=KB(hai cạnh tương ứng)

Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(Định nghĩa tam giác cân)

c) Ta có: ΔAKH cân tại A(cmt)

nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

d) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

hay \(\widehat{KBO}=\widehat{HCO}\)

Xét ΔKBO vuông tại K và ΔHCO vuông tại H có

KB=HC(cmt)

\(\widehat{KBO}=\widehat{HCO}\)(cmt)

Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)

nên OB=OC(hai cạnh tương ứng)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)

4 tháng 2 2021

tham khảo nha

a) Ta có : ^BAK+^KAC=90 độ (1)

^HBA+^BAH ( hay ^BAK)=90 độ (2)

Từ (1) và (2)=> ^KAC=^HBA ( vì đều bằng 90 độ - ^BAK )

Xét 🔺BHA và 🔺AKC có :

^BHA = ^AKC = 90 độ

AB=AC ( vì 🔺ABC vuông cân ở A )

^KAC = ^HBA ( chứng minh trên )

Suy ra 🔺BHA = 🔺AKC ( cạnh huyền - góc nhọn )

=> BH = AK ( 2 góc tương ứng )

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.

15 tháng 2 2020

con 💖*•.¸♡ ₷ℴá¡↭ℳųộ¡↭2ƙ7 ♡¸.•*mày copy thôi chứ

13 tháng 3 2016

Bạn vẽ hình ra đã rồi nhìn lời giải nhá

a) TG' ABC vuông cân tại A -> g' ABC = g' ACB = 45 và AB = AC

    TG' ABH vuông tại H -> g' ABH = 90 - BAH (1)

    Có g' CAH = 90 - BAH ( TG' ABC vuông tại A ) (2) 

 Từ (1) và (2) -> g' ABH = g' CAH 

Xét TG' AHB và TG' AKC có

      g' AHB = g' AKC ( = 90 )  

         AB = AC  ( gt )

       g' HAB = g' KAC ( cmt )

 -> TG' AHB = TG' AKC ( ch - gn )

-> BH = Ak

      

    

11 tháng 2 2017

tgttgtg

11 tháng 2 2017

bài này sai đề rồi