Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ hình( bạn tự vẽ nhé mik chỉ giải được phần sau khi vẽ hình thôi )
Ta thấy:
S(AMN ) = \(\frac{2}{3}\)S( ABC ) vì có đáy MN = \(\frac{2}{3}\)BC và có chung chiều cao hạ từ đỉnh \(A\rightarrow BC\)
\(\Rightarrow S\left(AMN\right)=90\div3\times2=60cm^2\)
dien tich abe bằng 1/2 dien tich abc (vi co chung cc hạ từ b xuống ac và ae bằng 1/2 ac) (1)
dien tich ade bang 1/2abe vì có chung cc hạ từ e xuống ab và ad bang 1/2 ab) (2)
từ (1 ) và (2)
dien tich abe là 90:2 =45 cm2
dien tich ade là 45 :2 +22.5 cm2
Ta có : Sabe bằng 1/2 Sabe vì chúng có chung chiều cao kẻ từ B và có đáy AE bằng 1/2 AC (1).
Sade bằng 1/2 S abe vì chúng có chung chiều cao kẻ từ E và có đáy AD bằng 1/2 AB (2).
Sabe = 90 : 2 = 45 (cm2)
Sade = 45 : 2 = 22,5 (cm2)
Ta có: SABN = 1/2SBCN
(AN=1/2NC, chung đường cao kẻ từ B).
Hai tam giác này lại có chung cạnh BN nên hai đường cao kẻ từ A và từ C xuống BN bằng nhau.
Hai đường cao này cũng là hai đường cao của hai tam giác ABK và CBK có cạnh đáy chung là BK.
Nên SABK = 1/2SCBK. (1)
Tương tự ta lại có SCBK = SACK (2)
Từ (1) và (2) ta được
SABK = 1/2SACK
ai k mk mk k lại
Vậy SACK = SABK x 2 = 42 x 2 = 84 (dm2)
Ta có: SABN = 1/2SBCN
(AN=1/2NC, chung đường cao kẻ từ B).
Hai tam giác này lại có chung cạnh BN nên hai đường cao kẻ từ A và từ C xuống BN bằng nhau.
Hai đường cao này cũng là hai đường cao của hai tam giác ABK và CBK có cạnh đáy chung là BK.
Nên SABK = 1/2SCBK. (1)
Tương tự ta lại có SCBK = SACK (2)
Từ (1) và (2) ta được
SABK = 1/2SACK
Vậy SACK = SABK x 2 = 42 x 2 = 84 (dm2)
Chứng minh NMBC là hình thang. =>NKIC là hình thang. =>S(CNK)=S(NKI)=S(NAK) S(NAK),S(NKI) chung chiều cao hạ từ M xuống AI=>AK=KI
Chứng minh NMBC là hình thang.
=>NKIC là hình thang.
=>S(CNK)=S(NKI)=S(NAK)
S(NAK),S(NKI) chung chiều cao hạ từ M xuống AI=>AK=KI