Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(M\in\Delta\Rightarrow M\left(2m+3;m\right)\)
\(\overrightarrow{MA}=\left(-2m-4;-m\right);\overrightarrow{MB}=\left(-2m-1;3-m\right);\overrightarrow{MC}=\left(-2m;-6-m\right)\)
\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(-6m-5;-3m-3\right)\)
\(\Rightarrow P=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(-6m-5\right)^2+\left(-3m-3\right)^2}\)
\(\Rightarrow P^2=\left(6m+5\right)^2+\left(3m+3\right)^2\)
\(\Rightarrow P^2=36m^2+60m+25+9m^2+18m+9\)
\(\Rightarrow P^2=45m^2+78m+34\)
\(\Rightarrow P^2=45\left(m^2+2.\frac{13}{15}+\frac{169}{225}\right)+\frac{1}{5}\)
\(\Rightarrow P^2=45\left(m+\frac{13}{15}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)
\(\Rightarrow P_{min}=\frac{\sqrt{5}}{5}\) khi \(m=-\frac{13}{15}\) \(\Rightarrow M\left(\frac{19}{15};-\frac{13}{15}\right)\)
Gọi điểm I thỏa mãn : \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\), do ABC cố định nên điểm I là cố định
ta có :
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|=\)\(\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|=\left|5\overrightarrow{MI}\right|=5MI\) nhỏ nhất khi M là hình chiếu của I lên đường thẳng d
a.
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)
\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G
Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)
b.
Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min khi MG đạt min
\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox
Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)
c.
Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)
Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)
\(\Rightarrow M\left(-2;0\right)\)
Kí hiệu v là vectơ nhé
1) Gọi I là điểm thỏa v IA + v IB + 3 v IC = 0 (1) (đây là vectơ 0 nhé)
=> v IA + v IA + v AB + 3 v IA + 3 AC = 0
=> 5 v IA = - (v AB + 3 v AC) => I cố định (do A, B, C cố định)
Ta có: v a = v MA + v MB + 3 v MC = v MI + v IA + v MI + v IB + 3 v MI + 3 v IB =
= 5 v MI + ( v IA + v IB + 3 v IC) = 5 v MI (do (1))
=> | v a| = | 5 v MI| = 5 MI
|v a| Min <=> MI min <=> MI = 0 <=> M trùng I
Vậy khi M là điểm thỏa 5 v MA = - (v AB + 3 v AC) (cố định) thì độ dài vectơ a nhỏ nhất.
Với mọi điểm O ta có :
\(\overrightarrow{u}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}=\overrightarrow{OA}-\overrightarrow{OM}+\overrightarrow{OB}-\overrightarrow{OM}+2\left(\overrightarrow{OC}-\overrightarrow{OM}\right)\)
\(=\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}-4\overrightarrow{OM}\)
Ta chọn điểm O sao cho \(\overrightarrow{v}=\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}\)
( Chú ý: Nếu G là trọng tâm tam giác ABC thì \(\overrightarrow{v}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OC}=3\overrightarrow{OG}+\overrightarrow{OC}=4\overrightarrow{OG}+\overrightarrow{GC}\). Bởi vậy để \(\overrightarrow{v}=\overrightarrow{0}\)ta chọn điểm O sao cho \(\overrightarrow{GO}=\frac{1}{4}\overrightarrow{GC}\))
Khi đó \(\overrightarrow{u}=-4\overrightarrow{OM}\)và do đó \(|\overrightarrow{u}|=4OM\)
Độ dài vectơ \(\overrightarrow{u}\)nhỏ nhất khi và chỉ khi 4OM nhỏ nhất hay M là hình chiếu vuông góc của O trên d
Ủa biểu thức là \(\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\) hay \(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) em? Vì vecto không có khái niệm min max, chỉ độ dài vecto mới có min, max thôi
dạ, có dấu giá trị tuyệt đối ạ, do em không gõ ra cái dấu đó được nên bị thiếu ạ.
Chị ơi giúp e cái này tìm 3 giá trị của x sao cho 0,6<x<0,61
Gọi I là tâm đường tròn nội tiếp tam giác ABC
\(\Rightarrow a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\)
Ta có:
\(A=\left|a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}\right|=\left|\left(a+b+c\right)\overrightarrow{MI}+a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right|\)
\(=\left|\left(a+b+c\right)\overrightarrow{MI}\right|=\left(a+b+c\right).MI\)
\(Amin\Leftrightarrow MImin\)
\(\Leftrightarrow\) M trùng I