Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
a) Vì M là trung điểm BC nên AM là đường trung tuyến của tam giác ABC
Mà tam giác ABC cân nên AM là trung tuyến đồng thời đường cao => AM vuông góc BC
b) Tam giác ABC cân nên góc B = góc C
Xét tam giác BHM và tam giác CKM có:
góc BHM= góc CKM= 90 độ
góc B= góc C
BM=CM ( do M là trđiểm BC)
=> tam giác BHM = tam giác CKM (Cạnh huyền - góc nhọn)
=> BH=CK
c) tam giác BHM = tam giác CKM (cmt)=> góc BMH=góc CMK( hai góc tương ứng)
mà BP // MK( do cùng vuông góc với AC)=> góc IBM= góc KMC ( hai góc đồng vị)
=> góc IBM =góc IMB => tam giác IBM cân
Kẻ ME vuông góc BH
=>ME//AC
Xét ΔKBM vuông tại K và ΔEMB vuông tại E có
BM chung
góc KBM=góc EMB
=>ΔKBM=ΔEMB
=>MK=BE
Xét tứ giác EHIM có
EH//IM
EM//IH
=>EHIM là hình bình hành
=>MI=EH
=>MK+MI=BH
Xét tam giác IMB và tam giác HMC có :
góc BIM = góc CHM ( = 90 độ )
MI = MH (gt)
góc IMB = góc HMC ( đối đỉnh )
=> Tam giác IMB = tam giác HMC ( g-c-g )
=> MB = MC và góc IBM = góc HCM (1)
Xét tam giác MBC có : MB = MC (cmt)
=> Tam giác MBC cân tại M
=> góc MBC = góc MCB (2)
Từ (1) và (2) => góc ABC = góc ACB
Xét ta giác ABC có : góc ABC = góc ACB (cmt)
=> Tam giác ABC cân tại A (đpcm)
Vẽ hình khó quá nên mk xin phép k vẽ nha ^^
M là giao của 2 đường cao BH và CI của tam giác ABC => M là trực tâm của tam giác ABC.
=> AM vuông góc với BC.
Xét tam giác AMI vuông tại I và tam giác AMH vuông tại H có
AM chung
MI = MH( gt)
=> \(\Delta AMI=\Delta AMH\)(cạnh huyền - cạnh góc vuông)
=> \(\widehat{IAM}=\widehat{HAM}\)=> AM là phân giác góc BAC.
Tam giác ABC có AM là đường phân giác, vừa là đương cao => Tam giác ABC cân tại A( đpcm)