K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

5 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường kính BB’. Nối B’A, B’D, B’C.

Ta có:Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90° ( góc nội tiếp chắn nửa đường tròn)

⇒ AC // B'D ( cùng vuông góc với BD)

Suy ra, tứ giác ADB’C là hình thang

Vì ADB’C nội tiếp đường tròn (O) nên ADB’C là hình thang cân

⇒ CD = AB'

⇒  A B 2 + C D 2 = A B 2 + A B ' 2

Mà tam giác BAB’ vuông tại A do Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90° ( góc nội tiếp chắn nửa đường tròn)

⇒  A B 2 + C D 2 = A B 2 + A B ' 2 = 2 R 2 = 4 R 2  (đpcm)

21 tháng 6 2017

b) Vì AHIO là hình bình hành nên OI = AH = 2OM

Gọi P là trung điểm OC PJ là trung trực OC PJ OC.

Có OM là trung trực BC OM BC. Suy ra

Δ O J P ~ Δ O C M ( g . g ) ⇒ O J O C = O P O M ⇒ O J . O M = O C . O P ⇒ O J .2 O M = O C .2 O P ⇒ O J . O I = O C . O C = R 2

21 tháng 1 2016

ko làm đc! tui mới lớp 6 thui

27 tháng 11 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ đường cao BH

Xét tam giác ABH vuông tại H có ∠(BAC) =  60 0

BH = AB.sin A = AB.sin  60 0  = (AB 3 )/2

AH = AB.cos A = AB.cos 60 0  = AB/2

Xét tam giác BHC vuông tại H có:

B C 2 = B H 2 + H C 2 = B H 2 + A C - A H 2

= B H 2 + A C 2 - 2 A C . A H + A H 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy được điều phải chứng minh.