Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
“““““` ✬ ‘✧ ‘✬
““““` __♜_♜_♜__
“““` `{,,,,,,,,,,,,,,,,,,,,,}
‘“` ✩`{✫//✰//✰//✫}` ✩
‘“` ♖_{♖___♖__♖___.♖}_♖
“` {///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“{//////////////////}
“{_✿__❀_♥_✿_♥_❀__✿_}
““““ * ` ` * ` ` *
‘““““ 0 ` ` 0 ` ` 0
““““ ||___||___||
““ * ` {,,,,,,,,,,,,,,,,,,,} ` *
““ 0 ` {////////} ` 0
‘“`_||_{_______”_____}_||_
“`{///////////////}
“`{,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
“`{///////////////}
“`{_____________”________}
Chứng minh :
Vẽ hình bình hành ABMC ta có AB = CM .
Để chứng minh AB = KC ta cần chứng minh KC = CM.
Thật vậy xét tam giác BCE có BC = CE (gt) => tam giác CBE cân tại C => vì góc C1 là góc ngoài của tam giác BCE => mà AC // BM (ta vẽ) => nên BO là tia phân giác của . Hoàn toàn tương tự ta có CD là tia phân giác của góc BCM . Trong tam giác BCM, OB, CO, MO đồng quy tại O => MO là phân tia phân giác của góc CMB
Mà : là hai góc đối của hình bình hành BMCA => MO // với tia phân giác của góc A theo gt tia phân giác của góc A còn song song với OK => K,O,M thẳng hàng.
Ta lại có : mà (hai góc đồng vị) => cân tại C => CK = CM. Kết hợp AB = CM => AB = CK (đpcm)
tk nha bạn
thank you bạn
Bạn tự vẽ hình nha, vẽ hình rồi post lên lâu quá
Vẽ hình bình hành ABMCABMC ta có AB=CMAB=CM
Cần chứng minh KC=CMKC=CM
Xét tam giác BCEBCE có BC=CEBC=CE⇒ΔCBE⇒ΔCBE cân tại CC
⇒ˆCBE=ˆE⇒CBE^=E^
Lại có ˆACB=ˆCBE+ˆE⇒ˆCBE=12ˆACBACB^=CBE^+E^⇒CBE^=12ACB^
Mà AC//BM⇒ˆACB=ˆCBM⇒ˆCBE=12ˆCBMAC//BM⇒ACB^=CBM^⇒CBE^=12CBM^
Nên BOBO là phân giác của ˆCBMCBM^
TƯơng tự ta có CDCD là phân giác của ˆBCMBCM^
Trong ΔBCMΔBCM có OB,CO,MOOB,CO,MO đồng quy tại OO
⇒MO⇒MO là tia phân giác của ˆCMBCMB^
Mà ˆBAC,ˆBMCBAC^,BMC^ là hai góc đối của hình bình hành BMCABMCA
⇒MO⇒MO song song với tia phân giác của góc ˆAA^
Mà tia phân giác góc ˆAA^ song song với OKOK
Nên O,M,KO,M,K thẳng hàng
Ta lại có ˆCMK=12ˆBMC;ˆA=ˆMCMK^=12BMC^;A^=M^
⇒ˆCMK=ˆA2⇒CMK^=A2^ màˆA2=ˆCKMA2^=CKM^
⇒ˆCKM=ˆCMK⇒ΔCKM⇒CKM^=CMK^⇒ΔCKM cân tại CC
⇒CK=CM⇒CK=CM , suy ra ĐPCM