K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

a)\(\Delta AED,\Delta ACB\)có AE = AC (gt) ;\(\widehat{EAD}=\widehat{CAB}\)(đối đỉnh) ; AD = AB (gt)

\(\Rightarrow\Delta AED=\Delta ACB\left(c.g.c\right)\Rightarrow\widehat{D}=\widehat{B}\)(2 góc tương ứng ở vị trí so le trong) => ED // BC

b) \(\Delta MAD,\Delta NAB\)\(\widehat{MAD}=\widehat{NAB}\)(đối đỉnh) ; AD = AB (gt) ;\(\widehat{D}=\widehat{B}\) (cmt)

\(\Rightarrow\Delta MAD=\Delta NAB\left(g.c.g\right)\Rightarrow AM=AN\)(2 cạnh tương ứng)

15 tháng 10 2016

Hình đâu òi

1 tháng 8 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

ΔAEM và ΔACN có:

∠C = ∠E ( hai góc so le trong, DE// BC)

AE = AC ( giả thiết)

∠EAM = ∠CAN (hai góc đối đỉnh)

⇒ ΔAEM = ΔACN (g.c.g) ⇒ AM = AN ( hai cạnh tương ứng).

5 tháng 12 2015

a) Xét tam giác EAD và tam giác BAC ta có

+) AD = AB( gt)

+) AE = AC(gt)

+) A1=A2 ( Hai góc đối đỉnh)

=> tam giác EAD = tam giác BAC (c.g.c)

=> C1=E1( hai góc  tương ứng)  mà C1 và E1 là hai góc so le trong

=> DE// BC

E D B C A 1 2 1 1

8 tháng 1 2016

Bài tập Vật lý

 

8 tháng 1 2016

de bang 89 thoi nha 

2 tháng 5 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

ΔABC và ΔADE có:

AB = AD (gt)

AC = AE (gt)

∠BAC = ∠DAE (hai góc đối đỉnh)

⇒ ΔABC = ΔADE (c.g.c)

⇒ ∠C = ∠E ⇒ DE // BC.

7 tháng 7 2017

Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

a) \(\Delta ABC=\Delta ADE\left(c.g.c\right)\) nên \(\widehat{C}=\widehat{E}\) suy ra DE //BC

b) \(\Delta AEM=\Delta ACN\left(g.c.g\right)\) nên AM = AN

7 tháng 12 2017

Bạn nên giải thích rõ ràng hơn nhé :)

10 tháng 1 2022

Xét Δ DAE và Δ BAC có:
AD = AB (gt)
DAE = BAC (đối đỉnh)
AE = AC (gt)
Do đó, Δ DAE = Δ BAC (c.g.c)
=> DEA = BCA (2 góc tương ứng)
Mà DEA và BCA là 2 góc so le trong nên DE // BC (đpcm)
Vì DE // BC nên MDA = ABN (so le trong)
Xét Δ DAM và Δ BAN có:
MDA = ABN (cmt)
AD = AB (gt)
DAM = BAN (đối đỉnh)
Do đó, Δ DAM = Δ BAN (g.c.g)
=> AM = AN (2 cạnh tương ứng) (đpcm)

 

10 tháng 1 2022

undefined

28 tháng 10 2016

Hình học lớp 7

18 tháng 11 2016

Ta có hình vẽ sau:

A B C E D M N 1 2

a) Xét ΔABC và ΔADE có:

AB = AD (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) ( 2 góc đối đỉnh)

AC = AE (gt)

\(\Rightarrow\) ΔABC = ΔADE (c-g-c)

\(\Rightarrow\) \(\widehat{ADE}\) = \(\widehat{ABC}\) (2 góc tương ứng)

Mà hai góc này lại ở vị tí so le trong nên:

\(\Rightarrow\) BC // DE (đpcm)

b) Vì BC // DE (ý a) \(\Rightarrow\) \(\widehat{MEA}\) = \(\widehat{NCA}\) (cặp góc so le trong)

Xét ΔMAE và ΔNAC có:

\(\widehat{MEA}\) = \(\widehat{NCA}\) ( cm trên)

AE = AC (gt)

\(\widehat{MAE}\) = \(\widehat{NAC}\) ( 2 góc đối đỉnh)

\(\Rightarrow\) ΔMAE = ΔNAC (g-c-g)

\(\Rightarrow\) AM = AN ( 2 cạnh tương ứng) (đpcm)

18 tháng 11 2016

Ta có hình vẽ:

A B C N M D E

a) Xét Δ DAE và Δ BAC có:

AD = AB (gt)

DAE = BAC (đối đỉnh)

AE = AC (gt)

Do đó, Δ DAE = Δ BAC (c.g.c)

=> DEA = BCA (2 góc tương ứng)

Mà DEA và BCA là 2 góc so le trong nên DE // BC (đpcm)

b) Vì DE // BC nên MDA = ABN (so le trong)

Xét Δ DAM và Δ BAN có:

MDA = ABN (cmt)

AD = AB (gt)

DAM = BAN (đối đỉnh)

Do đó, Δ DAM = Δ BAN (g.c.g)

=> AM = AN (2 cạnh tương ứng) (đpcm)