K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

A B C D E M N

xét \(\Delta ABC\)\(\Delta ADE\) có:

AB=AD(gt)

AC=AE(gt)

góc EAD= góc BAC(2 góc đđ)

=> \(\Delta ABC=\Delta ADE\)(c.g.c)

=>góc E= góc C

xét \(\Delta ANC\)\(\Delta AME\) có:

AE=AC(gt)

góc E=góc C(cmt)

góc AEM=góc NAC(2 góc đđ)

=>\(\Delta ANC=\Delta AME\)(g.c.g)

=>AM=AN

7 tháng 11 2016

thanks

9 tháng 8 2017

. A B C M D E I 1 1 2 2 2 1 2

\(Xét\)\(\Delta AMB\)\(\Delta DMC\)có:

\(AM=MC\)(M là trung điểm của AC)

\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)

\(BM=MC\)(gt)

=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)

Mà 2 góc này ở vị trí so le trong

=>AB//DC

=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)

Xét \(\Delta ABE\)\(\Delta DCB\)có:

\(AB=DC\)

\(\widehat{ABE}=\widehat{DCB}\)

\(EB=BC\)

=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)

=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)

Mà 2 góc này ở vị trí đồng vị

=>AE//BD

Xét \(\Delta AIE\)\(\Delta BID\)có:

\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)

\(AE=DC\)

\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)

=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)

=>\(AI=BI\)

Vậy AI=IB

Xét tứ giác ABCD có 

M là trung điểm của AC
M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra:AD//BC và AD=BC

hay AD//BE và AD=BE

Xét tứ giác AEBD có 

AD//BE

AD=BE

Do đó: AEBD là hình bình hành

Suy ra: AB và ED cắt nhau tại trung điểm của mỗi đường

=>I là trung điểm của AB

hay IA=IB

14 tháng 8 2020

a)

Có:    \(AD=AB;AE=AC\)

=>   \(\frac{AD}{AB}=1;\frac{AE}{AC}=1\)

=>    \(\frac{AD}{AB}=\frac{AE}{AC}=1\)

Áp dụng định lí Talet đảo ta được:

=>   DE // BC.

=>   \(NDA=ABM\)     (2 góc ở vị trí so le trong)

Xét tam giác ABM và tam giác ADN có:

\(\hept{\begin{cases}AB=AD\left(gt\right)\\ABM=ADN\left(cmt\right)\\BM=DN\left(gt\right)\end{cases}}\)

=>    Tam giác ABM = Tam giác ADN (cgc)

=>    TA CÓ ĐPCM.

b) Do Tam giác ABM = Tam giác ADN (cmt)

=>    \(BAM=DAN\)

Áp dụng định lí Talet khi BC // DE ta được:

=>   \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}\)

Mà:    \(\frac{AD}{AB}=\frac{AE}{AC}=1\left(cmt\right)\)

=>    \(\frac{DE}{BC}=1\Rightarrow DE=BC\)

Mà:   \(BM=DN\left(gt\right)\Rightarrow NE=MC\)

Khi đó,  CMTT: Tam giác AMC = Tam giác ANE (cgc)

=>   \(MAC=NAE\)

Ta có:    \(BAC+ABC+ACB=180\)      (ĐỊNH LÍ TỔNG 3 GÓC TRONG TAM GIÁC)

=>    \(BAM+MAC+ABC+ACB=180\)        (1)

Mà:   E, A, C là 3 điểm thẳng hàng

=>   góc EAB là góc ngoài của tam giác ABC

=>   \(EAB=ABC+ACB\)         (2)

Và:   \(MAC=EAN\left(cmt\right)\)         (3)

TỪ (1); (2) VÀ (3) TA ĐƯỢC:

=>    \(BAM+NAE+BAE=180\)

=>    \(NAM=180\)

=>     3 điểm M, N, A thẳng hàng.

VẬY TA CÓ ĐPCM.

14 tháng 8 2020

A B C D E N M

a) xét \(\Delta ADE\)VÀ \(\Delta ABC\)

\(AD=AB\left(gt\right);\widehat{DAE}=\widehat{BAC}\left(Đ^2\right);AE=AC\left(gt\right)\)

=> \(\Delta ADE\)=\(\Delta ABC\)(c-g-c)

=> \(\widehat{ADE}=\widehat{ABC}\)( hai góc tương ứng ) hay \(\widehat{ADN}=\widehat{ABM}\)

xét \(\Delta ABM\)VÀ \(\Delta ADN\)

\(BM=DM\left(gt\right);\widehat{ADN}=\widehat{ABM}\left(cmt\right);AB=AD\left(gt\right)\)

=>\(\Delta ABM\)=\(\Delta ADN\)(c-g-c)

b tối tớ suy nghỉ

Xét tứ giác ABCD có

M là trung điểm của AC
M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AD//BC và AD=BC

Xét tứ giác AEBD có

AD//BE

AD=BE

Do đó: AEBD là hình bình hành

Suy ra: Hai đường chéo AB và ED cắt nhau tại trung điểm của mỗi đường

hay Y là trung điểm của ED