K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

A B C E H O .

a, Xét tam giác ADB và tam giác AEC , ta có 

góc EDC = góc ACE = 90 độ ( góc ACE là góc nội tiếp chắn nửa đường tròn )

góc ABD = góc AEC  ( 2 góc nội tiếp cùng chắn cung AC )

\(\Leftrightarrow\)tam giác ADB đồng dạng với tam giác AEC (g_g)

\(\Rightarrow\)\(\frac{AD}{AB}=\frac{AC}{AE}\)( Các cặp góc tương ứng )

hay AD.AE=AB.AC

3 tháng 6 2018

A B C D O E F Q P R K L M I H S

a) Ta có: Tứ giác ABEC nội tiếp đường tròn (O) => ^ABC=^AEC hay ^ABD=^AEC.

Xét \(\Delta\)ADB và \(\Delta\)ACE: ^ABD=^AEC; ^ADB=^ACE (=900) => \(\Delta\)ADB ~ \(\Delta\)ACE (g.g)

=> \(\frac{AB}{AE}=\frac{AD}{AC}\Rightarrow AB.AC=AD.AE\)(đpcm).

b) Gọi giao điểm của AC và BF là M.

Ta có: AF//BC => ^AFM=^CBM. Mà ^CBM=^FAM (Cùng chắn cung CF) => ^AFM=^FAM

=> \(\Delta\)AMF cân đỉnh M => AM=FM.

Lại có: ^BCM=^FAM (So le trg) => ^BCM=^CBM => \(\Delta\)BMC cân tại M => MB=MC

=> \(\Delta\)AMB=\(\Delta\)FMC (c.g.c) => ^ABM=^FCM => ^ABM+^MBC=^FCM+^CBM => ^ABC=^FCB

=> Tứ giác ABCF là hình thang cân => ^BAF=^CFA.

Dễ thấy: ^DAF=900 (Do AD vuông BC và AF//BC); ^EFA=900

=> ^BAF - ^DAF = ^CFA - ^EFA => ^BAD=^CFE hay ^BAP=^CFQ

Xét \(\Delta\)APB và \(\Delta\)FQC: AB=FC; ^BAP=^CFQ; ^ABP=^FCQ

=> \(\Delta\)APB=\(\Delta\)FQC (g.c.g) => AP=FQ (2 cạnh tương ứng)

Xét tứ giác APQF: ^PAF=^QFA (=900); AP=FQ => Tứ giác APQF là hình chữ nhật

=> ^APQ=900 => PQ vuông góc AD. Mà AD vuông BC nên PQ//BC (Q.h //, vg góc).

c) Gọi giao điểm của FE với BC là R; AD cắt (O) tại L.

Theo chứng minh ở câu a): \(AB.AC=AD.AE\)

\(\Rightarrow AB.AC-AD.AK=AD.AE-AD.AK=AD\left(AE-AK\right)=AD.KE\)(*)

Ta có tứ giác ABEC nội tiếp (O) => \(\Delta\)AKC ~ \(\Delta\)BKE (g.g)

\(\Rightarrow\frac{AK}{BK}=\frac{CK}{KE}\Rightarrow BK.CK=AK.KE\)(1)

Tương tự: \(\Delta\)ADC ~ \(\Delta\)BDL (g.g)

\(\Rightarrow\frac{AD}{BD}=\frac{CD}{DL}\Rightarrow BD.CD=AD.DL\)(2)

Nhân (1) với (2) theo vế, ta được: 

\(BD.CD.BK.CK=AD.AD.KE.AK=\left(KE.AD\right).\left(AK.DL\right)\)(3)

Dễ c/m: 2 tứ giác AFRD và AFEL là hình chữ nhật => AD=FR và AL=FE

=> AL-AD = FE-FR => DL=RE, thay vào (3) suy ra:

\(BD.CD.BK.CK=\left(KE.AD\right).\left(AK.RE\right)\)(4)

Áp dụng hệ quả ĐL Thales: \(\frac{AK}{KE}=\frac{AD}{RE}\)(Do AD//RE) \(\Rightarrow AK.RE=KE.AD\)

Thay vào (4) => \(BD.CD.BK.CK=\left(KE.AD\right).\left(KE.AD\right)=\left(KE.AD\right)^2\)

\(\Leftrightarrow\sqrt{BD.CD.BK.CK}=KE.AD\)(**)

Từ (*) và (**) => \(AB.AC-AD.AK=\sqrt{BD.CD.BK.CK}\)(đpcm).

Gọi I là giao của AE và CD

AE vuông góc KC

CD vuông góc AK

=>I là trực tâm của ΔACK

=>KI vuông góc AC

=>KI//AB

góc BHD=góc OHC

=>90 độ-góc BHD=90 độ-góc OHC

góc DHI=góc CHI

=>HI là phân giác của góc CHD

HB vuông góc HI

=>HB là phân giác góc ngoài của ΔCHD

BD/BC=HD/HC

=>ID/IC=BD/BC

=>BC/IC=BD/ID

KI//AB//CD

=>AB/KI=AB/ID=BC/IC=AF/IF

ΔKIF đồng dạng vói ΔBAF

=>góc KFI=góc BFA

=>B,K,F thẳng hàng