K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

A B C D E H K M F

Tứ giác ACKB nt đường tròn => ^ABC = ^AKC

Mà ^ABC = ^AHE (Cùng phụ ^BAD) nên ^AKC = ^AHE

Do ^AHE = ^MHF (Đối đỉnh) => ^AKC = ^MHF. 

Ta có: ^AKC + ^MKF = 1800 => ^MHF + ^MKF = 1800

=> Tứ giác MHFK nt đường tròn => ^AMH = ^AFK

Xét tam giác AHM và tam giác AKF: ^KAF chung; ^AMH = ^AFK

=> Tam giác AHM ~ Tam giác AKF (g.g)

=> AH/AK = AM/AF => AH.AF = AM.AK (đpcm).

1: Xét tứ giác BCDE có \(\widehat{BDC}=\widehat{BEC}=90^0\)

nên BCDE là tứ giác nội tiếp

2: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có

góc EKB=góc DKC

Do đó: ΔEKB\(\sim\)ΔDKC

Suy ra: KE/KD=KB/KC

hay \(KE\cdot KC=KB\cdot KD\)